期刊文献+

^(18)F-FDG PET/CT影像组学对肺腺癌患者PD-L1表达水平的预测价值 被引量:11

Predictive value of ^(18)F-FDG PET/CT radiomics for the PD-L1 expression level in lung adenocarcinoma patients
原文传递
导出
摘要 目的:探究18F-脱氧葡萄糖(FDG)PET/CT影像组学特征预测肺腺癌患者程序性细胞死亡蛋白配体1(PD-L1)表达水平的临床应用价值。方法:回顾性纳入2017年1月至2019年1月间北京大学肿瘤医院核医学科101例病理确诊且治疗前行18F-FDG PET/CT检查的肺腺癌患者(男43例、女58例,中位年龄60岁)。免疫组织化学检测PD-L1表达阳性44例,阴性57例;分为训练组(71例)和验证组(30例)。分别提取患者临床病理资料、PET/CT影像组学特征、PET传统代谢参数、CT征象,将其纳入模型,使用过滤法和嵌入法进行特征选择。基于logistic回归、随机森林、XGBoost与轻量梯度提升机(LightGBM),分别进行训练并评估预测效果,优化得出预测PD-L1水平的最佳模型参数及相应受试者工作特征曲线下面积(AUC)。结果:对于PD-L1表达,各模型均有一定的预测效果,以LightGBM模型最优,其对阳性和阴性的预测精确率分别为0.85和0.76。将临床资料+CT信息纳入LightGBM,精确率、召回率、F1指数在阳性组和阴性组中分别为0.71、0.67、0.69和0.69、0.73、0.72,准确性为0.70,AUC为0.79;相应地,临床资料+PET预测模型的精确率、召回率、F1指数在阳性组和阴性组中分别为0.79、0.73、0.76和0.75、0.80、0.77,准确性为0.77,AUC为0.80;临床资料+CT+PET预测模型的精确率、召回率、F1指数在阳性组和阴性组中分别为0.85、0.73、0.79和0.76、0.87、0.81,准确性为0.80,AUC为0.83。从最佳预测模型(临床资料+CT+PET)中筛选出的重要特征包括最大标准摄取值(SUV max)、标准摄取峰值(SUV peak)、CT特征_二维最大径、PET特征_形状伸长、PET特征_灰度共生矩阵相关等。结论:联合临床资料、PET/CT影像组学特征、传统代谢参数可以有效预测PD-L1表达水平,辅助临床筛选免疫治疗获益人群。 Objective To explore the predictive value of 18F-fluorodeoxyglucose(FDG)PET/CT radiomics for the programmed death ligand-1(PD-L1)expression level in lung adenocarcinoma patients.Methods A total of 101 patients(43 males,58 females;median age 60 years)with histologically confirmed lung adenocarcinoma who received pre-treatment 18F-FDG PET/CT from January 2017 to January 2019 in Peking University Cancer Hospital were included retrospectively.There were 44 patients with positive PD-L1 by immunohistochemical assays,and 57 with PD-L1 negative.Patients were assigned to a training set(n=71)and a validation set(n=30).Clinical data,PET/CT radiomics parameters,conventional metabolic parameters,and observed CT characteristics of these patients were included in the models.The filter method and embedded method were used in feature selection.Models based on logistic regression,random forest,XGBoost and Light Gradient Boosting Machine(LightGBM)were trained and evaluated,and the optimal parameters to predict the PD-L1 expression as well as the area under curve(AUC)were attained.Results All models had predictive ability in the prediction of PD-L1 expression,while LightGBM was more powerful than the others,with the precision for positive and negative predictions of 0.85 and 0.76,respectively.Incorporating clinical data and data derived from thin-section CT images(clinical data+CT)into the LightGBM,the precision,recall and F1-score for positive and negative patients were 0.71,0.67,0.69 and 0.69,0.73,0.72,respectively,with the accuracy of 0.70 and the AUC of 0.79.As for clinical data+PET,the precision,recall and F1-score for positive and negative patients were 0.79,0.73,0.76 and 0.75,0.80,0.77,respectively,with the accuracy of 0.77 and the AUC of 0.80.As for clinical data+CT+PET,the precision,recall and F1-score for positive and negative patients were 0.85,0.73,0.79 and 0.76,0.87,0.81,respectively,with the accuracy of 0.80 and the AUC of 0.83.Features with significant importance in the model(clinical data+CT+PET)were as follows:maximum standardized uptake value(SUVmax),peak of standardized uptake value(SUVpeak),CT_shape_Maximum2DDiameterSlice,PET_shape_Elongation,PET_gray level co-occurrence matrix(GLCM)_Correlation,etc.Conclusions Incorporating clinical data,PET/CT radiomics features and conventional metabolic parameters,the PD-L1 expression can be effectively predicted,which help to assist the selection of patients who may benefit from the immunotherapy.
作者 张慧媛 孟祥溪 谢馥芯 宋宇飞 周欣 王磊 李囡 Zhang Huiyuan;Meng Xiangxi;Xie Fuxin;Song Yufei;Zhou Xin;Wang Lei;Li Nan(Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing),Key Laboratory for Research and Evaluation of Radiopharmaceuticals(National Medical Products Administration),Department of Nuclear Medicine,Peking University Cancer Hospital&Institute,Beijing 100142,China)
出处 《中华核医学与分子影像杂志》 CAS CSCD 北大核心 2021年第8期473-478,共6页 Chinese Journal of Nuclear Medicine and Molecular Imaging
基金 国家自然科学基金(81871387) 北京市自然科学基金(7202027)。
关键词 肺肿瘤 腺癌 程序性细胞死亡受体1 正电子发射断层显像术 体层摄影术 X线计算机 脱氧葡萄糖 预测 Lung neoplasms Adenocarcinoma Programmed cell death 1 receptor Positron-emission tomography Tomography,X-ray computed Deoxyglucose Forecasting
作者简介 通信作者:李囡,Email:rainbow6283@sina.com。
  • 相关文献

参考文献4

二级参考文献3

共引文献61

同被引文献74

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部