期刊文献+

季节性自回归差分移动平均模型在牡蛎中诺如病毒检出率预测上的应用 被引量:4

Application of seasonal ARIMA model in prediction of detection rate of norovirus in oyster
原文传递
导出
摘要 目的基于季节性自回归差分移动平均(ARIMA)模型分析并预测上海市售牡蛎中诺如病毒(NoV)的检出率,为水产品中NoV的污染规律提供参考。方法2016年6月—2019年11月,从上海芦潮港海鲜市场定期采购牡蛎样品共531只,通过巢式聚合酶链式反应(Nest-PCR),对其进行了NoV检测,按季度分析检出率。采用季节性ARIMA模型对牡蛎中NoV的检出率数据拟合建立模型,经过数据平稳化、模型选择和拟合、模型诊断得到最优模型,并运用最优模型对未来四个季度牡蛎中NoV的检出率进行预测。结果拟合出的季节性ARIMA(0,1,1)(0,1,0)4为最优模型,赤池信息量准则的修正值(AICc)最小(58.70),残差经Ljung-Box检验为白噪声序列。模型拟合牡蛎中NoV的阳性率趋势与实际检出率趋势基本吻合,平均绝对误差(MAE)为4.85,平均绝对百分比误差(MAPE)为30.25。用最优模型预测的未来四个季度牡蛎中NoV阳性检出率分别为31.89%、12.80%、9.47%、6.14%。结论季节性ARIMA模型(0,1,1)(0,1,0)4能较好地拟合牡蛎中NoV的阳性检出率趋势,对NoV污染的牡蛎等水产品的风险评估及NoV流行的防控具有一定的意义。 Objective The seasonal autoregressive integrated moving average(ARIMA)model was used to predict the detection rate of norovirus in oysters sold in Shanghai,which provided a reference for the prevalence of norovirus in aquatic products.Methods Oyster samples were regularly purchased from the Shanghai Luchaogang seafood market.A total of 531 oyster samples were tested for norovirus by nest-polymerase chain reaction(Nest-PCR),and the positive detection rate was calculated every quarter.The seasonal ARIMA model was used to fit the norovirus detection rate data in oysters from June 2016 to November 2019 to construct the model.After data stabilization,model selection and fitting and model diagnosis,the optimal model was obtained and the optimal model was used to predict the detection rate of norovirus in oysters in 2020.Results The seasonal ARIMA(0,1,1)(0,1,0)4 was the optimal model.Akaike’s information criterion and the finite corrections(AICc)(58.70)was the smallest.The residual error was a white noise sequence by Ljung-Box test.The trend of norovirus positive rate in oysters fitted by the model was basically consistent with the trend of actual detection rate,the mean absolute error(MAE)was 4.85 and the mean absolute percentage error(MAPE)was 30.25.The positive detection rates of norovirus in oysters predicted by the optimal model in the next four quarters were 31.89%,12.80%,9.47%,and 6.14%,respectively.Conclusion The seasonal ARIMA model(0,1,1)(0,1,0)4 can fit the trend of positive detection rate of norovirus in oysters.This model has certain significance for the risk assessment of aquatic products such as oysters contaminated by norovirus.It also has certain significance for the prevention and control of the norovirus epidemic.
作者 杨明树 董蕾 贾添慧 喻勇新 YANG Mingshu;DONG Lei;JIA Tianhui;YU Yongxin(College of Food Science and Technology,Shanghai Ocean University,Shanghai 201306,China;Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation(Shanghai),Ministry of Agriculture,Shanghai 201306,China)
出处 《中国食品卫生杂志》 CSCD 北大核心 2021年第4期430-434,共5页 Chinese Journal of Food Hygiene
基金 “十三五”国家重点研发计划重点专项(2017YFC1600703) 国家自然科学基金(31601570)。
关键词 季节性自回归差分移动平均模型 诺如病毒 检出率 时间序列分析 预测 Autoregressive integrated moving average model norovirus detection rate time series analysis prediction
作者简介 杨明树,男,博士研究生,研究方向为食源性病毒,E-mail:yangmingshu5266@qq.com;董蕾,女,硕士研究生,研究方向为食源性病毒,E-mail:donglei0668@163.com。
  • 相关文献

参考文献4

二级参考文献41

  • 1吴家兵,叶临湘,尤尔科.ARIMA模型在传染病发病率预测中的应用[J].数理医药学杂志,2007,20(1):90-92. 被引量:119
  • 2Vitoria M, Granich R, Gilks CF, et al. The global fight against HIV/AIDS, tuberculosis, and malaria: current status and future perspectives [J]. Am J Clin Pathol, 2009, 131(6) : 844-848.
  • 3Kumar V, Mangal A, Panesar S, et al. Forecasting malaria cases using climatic factors in delhi, India: a time series analysis [J]. Malar Res Treat, 2014, 2014: 482851.
  • 4Abeku TA, de Vlas S J, Borsboom G, et al. Forecasting malaria in- cidence from historical morbidity patterns in epidemic-prone areas of Ethiopia: a simple seasonal adjustment method performs best [J]. Trop Med Int Health, 2002, 7(10) : 851-857.
  • 5Brier OJ, Vounatsou P, Gunawardena DM, et al. Models for short term malaria prediction in Sri Lanka [J]. Malar J, 2008, 7 : 76.
  • 6Gomez-Elipe A, Otero A, van Herp M, et al. Forecasting malaria incidence based on monthly case reports and environmental factors in Karuzi, Burundi, 1997-2003 [J]. Malar J, 2007, 6: 129.
  • 7Hanf M, Adenis A, Nacher M, et al. The role of E1 Nino Southern Oscillation (ENSO) on variations of monthly Plasmodium falci- parum malaria cases at the Cayenne General Hospital, 1996- 2009, French Guiana [J]. Malar J, 2011, 10: 100.
  • 8Zhou L, Yu L, Wang Y, et al. A hybrid model for predicting the prevalence of schistosomiasis in humans of Qianjiang City, China [J]. PLoS One, 2014, 9(8) : e104875.
  • 9Yu L, Zhou L, Tan L, et al. Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in fore- casting incidence cases of HFMD in Shenzhen, China [J]. PLoS One, 2014, 9(6): e98241.
  • 10贺天锋,沈月平.三种模型预测疟疾在中国未来的发病趋势[J].上海预防医学,2008,20(2):57-60. 被引量:4

共引文献50

同被引文献55

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部