期刊文献+

基于资源分配的推荐算法研究

Research on Recommendation Algorithm Based on Resource Allocation
在线阅读 下载PDF
导出
摘要 针对马太效应中过度流行性偏见问题,通过定义新的节点权重来初始化项目资源值,达到降低项目流行性的目的;进一步考虑用户可信度因素,结合统计学中的3σ原则,根据数据统计量筛选出系统中存在的异常用户或欺诈用户。在此基础上给出一个新的推荐算法(UTMT)。在数据集MovieLens_100K上对算法进行试验,并与资源分配中的热传导算法作比较,结果表明,构建的UTMT推荐算法预测结果的准确率较之热传导算法有较大的提升。 Aiming at the problem of excessive popularity bias in Matthew effect,a new node weight is defined to initialize the project resource value,so as to achieve the aim of reducing the project popularity.Further considering the user credibility factor and combining with the 3σprinciple of statistics,the abnormal users or fraudulent users existing in the system are filtered out according to the data statistics.On this basis,a new recommendation algorithm(UTMT)is proposed.Test the algorithm on the dataset MovieLens_100k and make a comparison with heat conduction algorithm in resource allocation.The final results show that the constructed recommendation algorithm UTMT has a big improvement in the accuracy rate of predict outcomes than that of the heat conduction algorithm.
作者 迟露阳 CHI Luyang(College of Sciences,Northeastern University,Shenyang 110004,China)
机构地区 东北大学理学院
出处 《现代信息科技》 2021年第8期127-129,共3页 Modern Information Technology
关键词 二分图 马太效应 用户可信度 资源分配 推荐算法 bipartite graph Matthew effect user credibility resource allocation recommendation algorithm
作者简介 迟露阳(1996-),女,蒙古族,内蒙古赤峰人,硕士研究生,研究方向:推荐系统、数据分析。
  • 相关文献

参考文献2

二级参考文献29

  • 1Zhao W J, Jiang J, Weng J et al. Comparing Twitter and traditional media using topic models. In Proc. the 33rd ECIR, April 2011, pp.338-349.
  • 2Chen Y, Zhao J C, Hu X et al. From interest to function: Location estimation in social media. In Proc. the 27th AAAI Conference on Artificial Intelligence, July 2013, pp.180- 186.
  • 3Moricz M, Dosbayev Y, Berlyant M. PYMK: Friend recommendation at MySpace. In Proc. the 2010 ACM SIGMOD Int. Conf. Management of Data, June 2010, pp.999-1002.
  • 4Kazienko P, Musial K, Kajdanowicz T. Multidimensional social network in the social recommender system. IEEE Trans. System, Man and Cybernetics, Part A: Systems and Humans, 2011, 41(4): 746-759.
  • 5Deng Z W, He B W, Yu C C, Chen Y X. Personalized friend recommendation in social network based on clustering method. In Proc. the 6th ISICA, Oct. 2012, pp.84-9l.
  • 6Hannon J, Bennett M, Smyth B. Recommending Twitter users to follow using content and collaborative filtering approaches. In Proc, the 4th ACM Int. Conf. Recommender Systems, September 2010, pp.199-206.
  • 7Zuo X, Chin A, Fan X G et al. Connecting people at a conference: A study of influence between offline and online using a mobile social application. In Proc. GreenCom/iThings/CPSCOM, Nov. 2012, pp.277-284.
  • 8Mcpherson M, Smith-Lovin L, Cook J. Birds of a feather: Homophily in social networks. Annual Review of Sociology, 2001, 27: 415-444.
  • 9Chen J, Geyer W, Dugan C, Muller M. Make new friends, but keep the old: Recommending people on social networking sites. In Proc. the 27th Int. Conf. Human Factors in Computing Systems, April 2009, pp.201-21O.
  • 10Hsu W H, King A L, Paradesi M S R et al. Collaborative and structural recommendation of friends using weblog-based social network analysis. In Proc. AAAI Conference on Computational Approaches to Analyzing Weblogs, March 2006, pp.55-60.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部