期刊文献+

基于频响函数的稳健有限元模型修正 被引量:3

Robust Finite Element Model Updating Method Based on Frequency Response Function
在线阅读 下载PDF
导出
摘要 传统的基于频响函数(frequency response function,简称FRF)的模型修正方法在测试噪声较大、初始分析频响与测试频响残差较大、待修正参数较多等情况下不易收敛,为此提出了一种采用移频技术的极大似然估计有限元模型修正方法。首先,利用“先验”的频响函数方差信息,构造极大似然估计器,迭代求得最优的待修正参数估计;其次,在迭代方程中引入移频方法,采用总体最小二乘平差方法计算方程的解,以提高参数识别的收敛性和稳定性;最后,根据频率点的筛选准则剔除数据,采用一种高精度的频响扩充方法以减小扩充所带来的额外误差。列车转向架构架仿真算例和三角机翼飞机测试模型的修正结果表明,该方法抗噪性较强,在复杂情况下仍可以得到较好的修正结果。 The traditional model updating method based on frequency response function(FRF)is difficult to converge in case of large test noise,large residual between initial analysis FRF and test FRF,or large number of parameters to be modified.A dynamic finite element model(FEM)updating method based on maximum likelihood estimation and frequency shift is presented.The maximum likelihood estimator using"a priori"variance information of the FRF is constructed to obtain the optimal parameter estimation depending on the Gauss-Newton method.The frequency shift method and the total least square adjustment method are used to solve the iterative equation to improve the robustness of parameter identification.The test data of poor quality is eliminated according to selection criterion of frequency points.An approach for expanding incomplete experimental FRF is presented to reduce the extra error.Finally,numerical simulation and experimental investigation for updating the dynamic finite element model of a bogie structure and an aircraft model are performed to validate the robustness and efficiency of the present method.The obtained results show that the present method can be successfully applied to update the complex finite element models.
作者 范新亮 王彤 夏遵平 FAN Xinliang;WANG Tong;XIA Zunping(State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics Nanjing,210016,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2021年第4期797-805,837,共10页 Journal of Vibration,Measurement & Diagnosis
基金 航空科学基金资助项目(20161352011) 江苏高校优势学科建设工程资助项目。
关键词 模型修正 频响函数 极大似然估计 移频方法 抗噪性 model updating frequency response function(FRF) maximum likelihood estimation frequency shift method the noise resistance
作者简介 第一作者:范新亮,男,1993年6月生,硕士生。主要研究方向为动力学模型修正与确认。E-mail:1036838049@qq.com;通信作者:王彤,男,1978年1月生,博士、副教授。主要研究方向为振动测试、信号分析、模型修正等的研究、开发与应用。E-mail:wt78@nuaa.edu.cn。
  • 相关文献

参考文献5

二级参考文献25

  • 1姜东,丁继锋,费庆国,韩晓林.一种有限元模型修正中的参数选择方法[J].固体力学学报,2011,32(S1):88-92. 被引量:4
  • 2陈义,沈云中,刘大杰.适用于大旋转角的三维基准转换的一种简便模型[J].武汉大学学报(信息科学版),2004,29(12):1101-1105. 被引量:172
  • 3秦仙蓉.基于灵敏度分析的结构计算模型修正技术及其相关问题研究[M].南京:南京航空航天大学飞行器系,2001..
  • 4Guillaume P, Verboven P, Vanlanduit S. Frequency-domain maximum likelihood identification of modal parameters with confidence intervals[A]. In: Proceeding of 23rd ISMA[C]. Leuven, Belgium, 1998. 359-366.
  • 5Richardson M H, Formenti D L. Parameter estimation from frequency response measurements using rational fraction polynomials[A]. In: Proceeding of 1st IMAC[C]. Orlando, FL, USA, 1982. 167-181.
  • 6Pintelon R,Schoukens J. Robust identification of transfer functions in the s- and z-domains[J]. IEEE Transactions on Instrumentation and Measurement, 1990, 39(4): 565-573.
  • 7Shih C Y, Tsuei Y G, et al. Complex mode indication function and its applications to spatial domain parameter estimation[J]. Mechanical Systems and Signal Processing, 1988, 2(4): 367-377.
  • 8程云鹏.矩阵论[M].西安:西北大学出版社,2000..
  • 9Yaron A F and Burkhard S. Performing similarity transformations using the Error-In-Variables Model [ C ]. ASPRS 2005 Annual Conference Baltimore, Maryland, March 7 - 11, 2005.
  • 10Kukush A and Huffel S V. Consistency of elementwiseweighted total least squares estimator in a Multivariate Errors-Invariables Model AX - B [ J ]. Springer-Verlag, Metrika ,2004, 59 : 75 - 97.

共引文献101

同被引文献30

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部