期刊文献+

基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究 被引量:19

A Comparative Study on Compressive Strength Model of Recycled Brick Aggregate Concrete Based on PSO-BP and GA-BP Neural Networks
在线阅读 下载PDF
导出
摘要 采用两种混合算法人工神经网络模型(PSO-BP和GA-BP)预测具有不同砖骨料替代率的再生砖骨料混凝土(RBAC)的抗压强度。以RBAC的水泥质量、水灰比、碎瓷砖(CT 0—5,CT 5—32.5)替代率、碎砖(CB 0—5,CB 5—32.5)替代率及天然骨料(NA 0—5,NA 5—32.5)替代率等八个参数作为混合神经网络模型的输入参数,28 d立方体抗压强度作为输出参数。使用均方根误差(RMSE)、相关系数(R)和平均误差率对两种模型进行验证和对比分析。结果表明,PSO-BP模型与GA-BP模型都能实现高精度的预测,具有强大的泛化能力,总体而言,PSO-BP模型稍好于GA-BP模型,且都优于BP模型。同时,这也证明提出的混合算法神经网络有助于寻找最佳的RBAC配合比设计,提高实验效率。 Two hybrid algorithm artificial neural network models(PSO-BP and GA-BP)are used to predict the compressive strength of recycled brick aggregate concrete(RBAC)with different brick aggregate replacement rates.The cement quality,water-cement ratio,replacement rate of broken ceramic tile(CT 0—5,CT 5—32.5),broken brick(CB 0—5,CB 5—32.5)and natural aggregate(NA 0—5,NA 5—32.5)of RBAC were used as input parameters of the hybrid neural network model,and the 28 day cube compressive strength was taken as output parameter.Root mean square error(RMSE),correlation coefficient(R)and average error rate were used to verify and compare the two models.The results show that both the PSO-BP model and the GA-BP model can achieve high-precision prediction and have strong generalization capabilities,In ge-neral the PSO-BP model is slightly better than the GA-BP,and both are better than BP model.At the same time,it also proves that the proposed hybrid algorithm neural network is helpful to find the best RBAC mix ratio design and improve the experimental efficiency.
作者 黄炜 周烺 葛培 杨涛 HUANG Wei;ZHOU Lang;GE Pei;YANG Tao(State Key Laboratory of Green Building in Western China,Xi’an University of Architecture&Technology,Xi’an 710055,China;School of Civil Engineering,Xi’an University of Architecture&Technology,Xi’an 710055,China;Key Laboratory of Structural Engineering and Earthquake Resistance of Ministry of Education,Xi’an University of Architecture&Technology,Xi’an 710055,China)
出处 《材料导报》 EI CAS CSCD 北大核心 2021年第15期15026-15030,共5页 Materials Reports
基金 国家自然科学基金(51978566) 陕西省重点研发计划项目-重点产业创新链项目(2020ZDLNY06-04)。
关键词 人工神经网络 粒子群算法 遗传算法 再生砖骨料 抗压强度 混凝土 artificial neural network particle swarm optimization genetic algorithm recycled brick aggregate compressive strength concrete
作者简介 黄炜,西安建筑科技大学教授,硕士研究生导师,西安建筑科技大学建筑工程新技术研究所所长,陕西省土木学会装配式建筑委员会副主任委员,陕西省中青年科技创新领军人才。近年来一直从事新型结构体系、工程结构抗震及强度理论等方面的研究工作。作为项目负责人和主要完成人参加了中国博士后基金、国家自然科学基金、国家“十五”科技攻关等多项课题的研究工作,在《建筑结构学报》《土木工程学报》《工程力学》等学术期刊发表论文40多篇,zl1451911953@163.com;周烺,西安建筑科技大学硕士研究生,主要从事绿色装配式再生材料方向的研究。
  • 相关文献

参考文献6

二级参考文献52

  • 1璩继立,峁会勇.盾构施工地面长期沉降的神经网络预测[J].上海地质,2004(3):42-46. 被引量:12
  • 2刘国华,陈斌,汪树玉,郑志强,何国余.基于人工神经网络和Monte-Carlo法的混凝土配合比优化设计研究[J].水力发电学报,2003,22(4):45-53. 被引量:15
  • 3董聪,郦正能,夏人伟,何庆芝.多层前向网络研究进展及若干问题[J].力学进展,1995,25(2):186-196. 被引量:47
  • 4刘红兵,王李管,张良辉,戴碧波,荆永滨.基于人工神经网络技术的隧道地表沉降预测[J].矿业研究与开发,2007,27(2):26-28. 被引量:7
  • 5Ghaboussi J, Garrett Jr JH and Wu X. Material Modeling with Neural Networks. Proceedings of the International Conference on Numerical Methods in Engineering: Theory and Applications, Swansea, U. K., 1990:70-717.
  • 6Gbaboussi J, Gerrett Jr JH and Wu X. Knowledge- based Modeling of Material Behavior with Neural Networks. Journal of Engineering Mechanics Division, ASCE, 117 ( 1 ),1991:132-153.
  • 7Wu, X. and Ghaboussi, J. Modeling Unloading mechanism and cyclic behavior of concrete with adaptive neural networks. Proceedings, Second Asian- Pacific Conference on Computational Mechanics, Sydney, Australia, 1993.
  • 8Ghaboussi, J., Lade, P.V. and Sidarta, D.E. Neural Networks Based Modeling in Geomechanics, Proceedings of 8^th International Conference on Computer Methods and Advances in Geomechanics, Morgantown, WV. 1994.
  • 9Ghaboussi J, Pecknold DA and Haj - Ali JA. Autoprogresaive Training of Neural Networks Constitutive Models, International Journal for Nmnerical Methods in Engineering, 42 (1),1998: 105-127 .
  • 10Ghaboussi J and Sidarta DE. New Nested Adaptive Neural Networks (NANN) for Constitutive Modeling, Computers and Geoteehnies, 22 (1), 1998:29-52.

共引文献119

同被引文献198

引证文献19

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部