期刊文献+

机器学习预测油气产量现状 被引量:21

Overview of oil and gas production forecasting by machine learning
在线阅读 下载PDF
导出
摘要 机器学习是一种通用的数据驱动分析方法,也是一个重要的油气大数据分析利用手段。油气勘探开发作为具有悠久历史和庞大数据基础的重要领域,具有很大的数据挖掘潜力。利用油气田大数据分析技术可以帮助决策者进行投资分析、风险评估、生产优化,带来巨大的经济效益。机器学习方法早已被研究人员尝试应用于油气领域相关研究,随着机器学习算法的发展,许多应用场景被不断提出,但针对具体场景的通用方案仍在探索中。笔者从最基本原理着手介绍了机器学习的建模过程,梳理了用于油气田大数据分析的3类主要机器学习方法的发展历史,结合油气田大数据的特点,讨论了油气田大数据分析利用的核心内容、目标及优势,分析了机器学习在油气领域的主要应用场景,总结了目前典型油气产量预测中存在的问题及对策。 The machine learning is not only an important tool for oil and gas big data analysis,but also a general data-driven analysis method.As an important field with a long history and a large data base,oil and gas exploration and development has a great potential for data mining.The use of big data analysis technology for oil and gas field can help decision makers to conduct investment analysis,risk assessment and production optimization,which brings significant economic benefits.The machine learning method has been tried by the researchers applying to the researches on oil and gas.Nowadays,many application scenarios have been proposed with the development of machine learning algorithms,but general solutions for specific scenario are still divided.So that,we introduces the procedure of a machine learning modeling upon the most basic principles,and summarizes the development history of the main three kinds of machine learning methods that can be applied to oil and gas big data analysis.And then based on the characteristics of oil and gas field big data,the core contents,goals and advantages of oil and gas field big data analysis and utilization are discussed,the main application scenarios of machine learning in oil and gas field are analyzed,and the existing problems and countermeasures in typical oil and gas production prediction are summarized.
作者 黄家宸 张金川 HUANG Jiachen;ZHANG Jinchuan(Sinopec Petroleum Exploration and Production Research Institute,Beijing 100083,China;China University of Geosciences(Beijing),Beijing 100083,China;Key Laboratory of Shale Gas Exploration and Evaluation,Ministry of Land and Resources,Beijing 100083,China;Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation and Development Engineering,Beijing 100083,China)
出处 《油气藏评价与开发》 CSCD 2021年第4期613-620,共8页 Petroleum Reservoir Evaluation and Development
基金 国家自然科学基金项目“页岩含气性关键参数测试及智能评价系统”(41927801)。
关键词 油气田大数据 数据驱动模型 产量预测 机器学习 智能油田 big data of oil and gas field data-drive model production forecast machine learning intelligent oilfield
作者简介 第一作者:黄家宸(1993-),男,博士,助理研究员,从事地球物理及油气田大数据研究工作。地址:北京市海淀区学院路31号中国石化石油勘探开发研究院,邮政编码:100083。E-mail:huangjiachen.hjc@163.com。
  • 相关文献

参考文献2

二级参考文献20

共引文献78

同被引文献347

引证文献21

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部