期刊文献+

基于VGG16和迁移学习的高分辨率掌纹图像识别 被引量:11

High-resolution palmprint image recognition based on VGG16 and transfer learning
在线阅读 下载PDF
导出
摘要 由于高分辨率掌纹图像尺寸大、掌纹图像数量少等特点,目前主流的方法采用细节特征点匹配,其算法设计复杂,识别精度不高。针对以上问题,本文提出基于迁移学习的高分辨率掌纹图像识别方法,该方法以VGG16为基础网络,将在imagenet数据集上训练好的权重参数,用于初始化所有的卷积层;使用图像增强技术将高分辨率掌纹图像分别4、9、16、25等分,采用投票的方法得到整个掌纹图像的准确率,最高可达到99.69%。经实验证明,该方法可以实现端到端的高精度高分辨掌纹图像识别,识别率优于以往的基于细节特征点匹配方法。 Due to the large size of high-resolution palmprint images and the small number of palmprint images,the current mainstream method adopts detail feature point matching,which has complicated algorithm design and low recognition accuracy. To solve the above problems,a high resolution palmprint image recognition method based on transfer learning is proposed in this paper.This method takes VGG16 as the base network and initializes all convolutional layers with weight parameters trained on ImageNet data set. The high resolution palmprint images are divided into4, 9, 16 and25 equal parts by image enhancement technology,and the accuracy of the whole palmprint image is obtained by voting method,which can reach up to99.69%. Experimental results show that this method can realize end-to-end high precision and high resolution palmprint image recognition,and the recognition rate is better than the previous method based on detail feature point matching.
作者 吴碧巧 邢永鑫 王天一 WU Biqiao;XING Yongxin;WANG Tianyi(College of Big Data and Information Engineering,GuiZhou University,Guiyang 550025,China)
出处 《智能计算机与应用》 2021年第5期37-42,共6页 Intelligent Computer and Applications
基金 贵州省科技厅与贵州大学科技合作计划项目(黔科合LH字[2016]7431号)。
关键词 生物特征识别 高分辨率掌纹图像 迁移学习 图像增强 VGG16 biometric recognition high-resolution palmprint images transfer learning image enhancement VGG16
作者简介 吴碧巧(1994-),女,硕士研究生,主要研究方向:深度学习、图像识别;邢永鑫(1993-),男,硕士研究生,主要研究方向:深度学习、目标检测;通讯作者:王天一(1989-),男,博士,副教授,主要研究方向:量子通信、图像处理、计算机视觉,Email:tywang@gzu.edu.cn。
  • 相关文献

参考文献9

二级参考文献124

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2DavidZhang,Guang-MingLu,AdamsWai-KinKong,MichaelWong.Online Palmprint Identification System for Civil Applications[J].Journal of Computer Science & Technology,2005,20(1):70-76. 被引量:4
  • 3冯汉中,陈永义,成永勤,罗可生.双流机场低能见度天气预报方法研究[J].应用气象学报,2006,17(1):94-99. 被引量:30
  • 4Lu G, Zhang D, Wang K. Palmprint recognition using eigenpalrns features. Pattern Recognition Letters, 2003,24(9): 1463-1467.
  • 5Kong A, Zhang D, Kamel M. A survey of palmprint recognition. Pattern Recognition, 2009,42(7):1408-1418. [doi: 10.1016/j.patcog.2009.01.018].
  • 6Chert F, Huang X, Zhou J. Hierarchical minutiae matching for fingerprint and palmprint identification. IEEE Trans. on Image Processing, 2013,22(12):4964-4971. [doi: 10.1109/TIP.2013.2280187].
  • 7Liu E, Jain AK, Tian J. A coarse to fine minutiae-based latent palmprint matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013,35:2307-2322. [doi: 10.1109/TPAMI.2013.39].
  • 8Jain AK, Feng J. Latent palmprint matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (6): 1032-1047. [doi: 10.1109/TPAMI.2008.242].
  • 9Lim E, Jiang X, Yau W. Fingerprint quality and validity analysis. In: Mercer B, ed. Proc. of the 2002 IEEE 9th Int'l Conf. on Image Processing. Los Alamitos: 1EEE Computer Society Press, 2002. I469-I-472. [doi: 10.1109/ICIP.2002.1038062].
  • 10Shen L L, Kot A, Koo W M. Quality measures of fingerprint images. In: Bigun J, Smeraldi F, eds. Proc. of the Audio- and Video- Based Biometric Person Authentication. New York: Springer-Verlag, 2001. 266-271. [doi: 10.1007/3-540-45344-X 391.

共引文献60

同被引文献75

引证文献11

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部