期刊文献+

基于投票法的密度峰聚类算法 被引量:3

Density peak clustering based on voting method
在线阅读 下载PDF
导出
摘要 密度峰聚类(DPC)算法采用点的密度与距离属性对数据进行划分。该算法对大多数数据集能获得较好的聚类结果。然而,对于存在交叉、重叠情况的数据集,DPC算法的最近邻居分配方法将造成较大误差。针对这一缺陷,本文考虑到数据点的大部分邻居属于相同的簇,提出一种多邻居投票的聚类方法。该方法采取多个邻居的投票结果来决定未知点的归属。数值实验表明,基于投票法的密度峰聚类算法在面对点分布存在交叉、重叠情况的数据集时优于DPC算法。 Density Peak Clustering(DPC)divides the data according to the density and distance attributes of points,which can achieve better clustering results for most data sets.However,the nearest neighbor allocation method of DPC will cause large errors for the data sets with overlapping.Aiming at this defect,a multi neighbor voting clustering method is proposed,which uses the voting results of multiple neighbors to determine the ownership of unknown points.Numerical experiments show that the density peak clustering algorithm based on voting method outperforms general DPC when facing overlapping data sets.
作者 黄文康 杨苏杭 范梦婷 原俊青 HUANG Wenkang;YANG Suhang;FAN Mengting;YUAN Junqing(Department of information technology,Zhejiang Economic&Trade Polytechnic,Hangzhou Zhejiang 310018,China;School of Science,Zhejiang University of Technology,Hangzhou Zhejiang 310023,China)
出处 《太赫兹科学与电子信息学报》 2021年第3期517-522,共6页 Journal of Terahertz Science and Electronic Information Technology
基金 国家自然科学基金青年基金资助项目(11601483)。
关键词 聚类 密度峰 K最近邻 投票法 clustering density peak K-Nearest Neighbor voting method
作者简介 黄文康(1988-),男,硕士,实验师,主要研究方向为机器学习、人工智能。email:389321927@qq.com;通信作者:原俊青,email:yuanjq@zjut.edu.cn。
  • 相关文献

参考文献5

二级参考文献28

  • 1孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. 被引量:78
  • 2Mark Everingham,Luc Gool,Christopher K. I. Williams,John Winn,Andrew Zisserman.The Pascal Visual Object Classes (VOC) Challenge[J]. International Journal of Computer Vision . 2010 (2)
  • 3Aristides Gionis,Heikki Mannila,Panayiotis Tsaparas.Clustering aggregation[J]. ACM Transactions on Knowledge Discovery from Data (TKDD) . 2007 (1)
  • 4Li Fei-Fei,Rob Fergus,Pietro Perona.Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories[J]. Computer Vision and Image Understanding . 2006 (1)
  • 5Z.G. Yang,Y.X. Peng,J.G. Xiao.Visual vocabulary optimization with spatial context for imageannotation and classification. Proc. of the18th International Conference on Advances inMultimedia Modeling . 2012
  • 6Beyer K,Goldstein J,Ramakrishnan R,et al.When is "nearest neighbor" meaningful?. Proceedings of the 7th International Conference on Database Theory, ICDT’ 99 . 1999
  • 7Moosmann, Frank,Nowak, Eric,Jurie, Frederic.Randomized clustering forests for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2008
  • 8Jian Wu,Zhiming Cui,Pengpeng Zhao,Jianming Chen.Visual Vocabulary Tree Construction Research Using Adaptive Fuzzy K-Means Clustering. Advanced Science Letters . 2012
  • 9Wang, Jingyan,Li, Yongping,Zhang, Ying,Wang, Chao,Xie, Honglan,Chen, Guoling,Gao, Xin.Bag-of-features based medical image retrieval via multiple assignment and visual words weighting. IEEE Transactions on Medical Imaging . 2011
  • 10J. Philbin.Scalable Object Retrieval in Very Large Image Collections. . 2010

共引文献38

同被引文献35

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部