期刊文献+

基于多尺度密集网络的配网架空输电线路绝缘子识别 被引量:13

Insulators Identification for Overhead Transmission Lines in Distribution Networks Based on Multi-Scale Dense Network
原文传递
导出
摘要 绝缘子为配网架空输电线路的重要组成部分,对无人机航拍的绝缘子图像进行精准识别是实现其缺陷检测和故障诊断的重要前提。针对图像中绝缘子目标小、背景复杂的问题,提出了一种基于多尺度密集网络的配网架空输电线路绝缘子识别算法。首先,利用K-means算法对数据集的目标框进行分析,获取合适的锚框;然后,将基础网络中的残差模块替换为密集连接模块,以增强网络特征信息的复用与融合,同时添加空间金字塔池化模块、优化多尺度特征融合,以对绝缘子进行预测;最后,用融合交叉熵函数和Focal损失函数的损失函数替换原始损失函数,构建航拍巡检图像数据集并进行实验。实验结果表明,相比原始算法,本算法的准确率提高了约12个百分点,且鲁棒性更强,基本满足电网巡检对绝缘子识别的要求。 Insulators are an essential part of overhead transmission lines in distribution networks.Accurate identification of insulator images by drone aerial photography is an important prerequisite for defect detection and fault diagnosis.Aiming at the problem of small insulator targets and complex backgrounds in images,an algorithm for insulators identification on overhead transmission lines in distribution networks based on multi-scale dense networks is proposed in this paper.First,use the K-means algorithm to analyze the target frame of the dataset to obtain a suitable anchor frame.Second,replace the residual module in the basic network with a dense connection module to enhance the multiplexing and fusion of network feature information.At the same time,add a spatial pyramid pooling module and optimize multi-scale feature fusion to predict insulators.Finally,replace the original loss function with a loss function that combines the cross-entropy function and the Focal loss function to construct an aerial inspection image data set and perform experiments.The experimental results showed that the algorithm accuracy is improved by about 12 percentage points and has a stronger robustness than the original algorithm,which meets the requirements of the grid inspection for insulator identification.
作者 陈志豪 肖业伟 李志强 刘洋 Chen Zhihao;Xiao Yewei;Li Zhiqiang;Liu Yang(School of Automation and Electronic Information,Xiangtan University,Xiangtan,Hunan 411105,China;Key Laboratory of Intelligent Computing&Information Processing of Ministry of Education,Xiangtan University,Xiangtan,Hunan 411105,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第8期338-347,共10页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61773330) 湖南省自然科学基金(2017JJ2251)。
关键词 图像处理 多尺度 密集网络 空间金字塔池化 损失函数 image processing multi-scale dense network space pyramid pooling loss function
作者简介 陈志豪,E-mail:zhihao630@126.com;肖业伟,E-mail:10802795@qq.com。
  • 相关文献

参考文献7

二级参考文献50

  • 1杨翠茹.基于纹理特征的绝缘子检测方法[J].电气技术,2010,11(7):46-48. 被引量:13
  • 2孙凤杰,崔维新,张晋保,张旭东,肖学东.远程数字视频监控与图像识别技术在电力系统中的应用[J].电网技术,2005,29(5):81-84. 被引量:72
  • 3张广军.机器视觉[M]{H}北京:科学出版社,2005.
  • 4Irene Y. H. Gu,Unai Sistiaga,Sonja M. Berlijn,Anders Fahlstrm. Automatic Surveillance and Analysis of Snow and Ice Coverage on Electrical Insulators of Power Transmission Lines[M].Computer Vision and Graphics,2009.368-379.
  • 5胡小锋;赵辉.Visual C++/MATLAB图像处理与识别实用案例精选[M]{H}北京:人民邮电出版社,20049.
  • 6张强;王正林.精通MATLAB图像处理[M]{H}北京:电子工业出版社,2009.
  • 7Thomazini,DanielGelfuso,Maria Virginia,Correa Altafim Ruy Alberto. Classification of Polymers Insulators Hydrophobicity basead on Digital Image Processing[J].MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS,2012,(15):365-371.
  • 8M. Hamed,A. El Desouky. A Computerized Inspection for the High Voltage Insulating Surfaces[J].{H}Electric Power Systems Research,2000,(2):91-95.
  • 9Thomazini, Daniel,Gelfuso, Maria Virginia,Altafim, Ruy Alberto Corrêa. Classification of polymers insulators hydrophobicity based on digital image processing[J].{H}Materials Research,2012,(3):1516-1439.
  • 10李然.红外测温技术与变电站图像监控系统的融合研究与实现[J].电网技术,2008,32(14):80-84. 被引量:33

共引文献411

同被引文献104

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部