摘要
讨论了一类由谱数据构造子周期Jacobi矩阵的逆特征值问题.首先研究了子周期Jacobi矩阵的谱性质,其次给出此类矩阵有解以及有唯一解的充要条件并提出重构该矩阵的算法,最后给出了具体的数值实例来验证该算法的有效性.
An inverse eigenvalue problem was considered for sub-periodic Jacobi matrix which was constructed from its spectral data.Firstly we investigated the spectral properties of such sub-periodic Jacobi matrices.Then we discussed the necessary and sufficient conditions for the solvability and uniqueness of such matrices,and proposed an algorithm to reconstruct these matrices.Finally,a numerical experiment was given to verify the effectiveness of the algorithm.
作者
郭雪娟
吉雁斐
GUO Xue-juan;JI Yan-fei(School of Science, North University of China, Taiyuan 030051, China)
出处
《中北大学学报(自然科学版)》
CAS
2021年第3期207-212,231,共7页
Journal of North University of China(Natural Science Edition)
基金
国家自然科学基金资助项目(51675491)。
关键词
子周期Jacobi矩阵
逆特征值问题
顺序主子阵
谱数据
sub-periodic Jacobi matrix
inverse eigenvalue problem
leading principle submatrix
spectral data
作者简介
郭雪娟(1996-),女,硕士生,主要从事组合数学的研究.