摘要
为对比最大熵谱分析和小波变换等方法对层序地层划分的各自优势和特点,介绍了最大熵谱分析和小波变换的原理,结合实例展示了2种方法在测井曲线识别中的有效性,并对比了2种方法在高分辨率层序地层划分应用的差异性。研究结果表明:最大熵谱分析技术更适合对测井信号中的突变性进行识别,结合地震、岩性资料确定三级、四级层序界面;小波变换更适合对测井信号中的多尺度旋回进行识别,适合五级层序的划分。将2种方法相结合,把饶阳凹陷大王庄地区东营组三段划分为1个长期基准面旋回、5个中期基准面旋回和46个短期基准面旋回。
The maximum entropy spectrum analysis and wavelet transform are used to extract the spectrum characteristic data by processing the logging data,and then identify the sequence interface to complete the division of high-resolution sequence stratigraphy.In this paper,the principles of maximum entropy spectrum analysis and wavelet transform were briefly introduced,the effectiveness of the two methods in logging curve identification was demonstrated by examples,and the difference in the application of the two methods in high-resolution sequence stratigraphic division is compared.The results show that the maximum entropy spectrum analysis technique is more suitable for identifying the mutagenicity of logging signals,and determining the third-level and fourth-level sequence interfaces based on the seismic and lithological data.Wavelet transform is more suitable to identify multi-scale cycles in logging signals and to classify five-level sequences.By combining the two methods,the third member of Dongying formation in Dawangzhuang area,Raoyang sag is divided into one long-term base level cycle,five medium-term base level cycles and forty-six short-term base level cycles.
作者
周亚伟
杜玉洪
谢俊
郭发军
张淑娟
ZHOU Yawei;DU Yuhong;XIE Jun;GUO Fajun;ZHANG Shujuan(College of Earth Science and Engineering,Shandong University of Science and Technology,Qingdao,Shandong 266590,China;Research Institute of Exploration and Development,PetroChina North China Oilfield Company,Renqiu,Hebei 062552,China)
出处
《中国科技论文》
CAS
北大核心
2021年第5期494-501,共8页
China Sciencepaper
基金
国家自然科学基金资助项目(51674156)
中国石油天然气股份有限公司重大专项(2017E-15)。
关键词
饶阳凹陷
最大熵谱分析
小波变换
层序划分对比
Raoyang sag
maximum entropy spectral analysis
wavelet transform
sequence division contrast
作者简介
第一作者:周亚伟(1995—),男,硕士研究生,主要研究方向为石油地质;通信作者:谢俊,教授,主要研究方向为油气田开发,xiejun0532@163.com。