期刊文献+

基于改进GMM和多特征融合的视频火焰检测算法 被引量:9

Video Flame Detection Algorithm Based on Improved GMM and Multi-Feature Fusion
原文传递
导出
摘要 针对现有视频图像火焰检测算法前景提取不完整、准确率低和误检率高等问题,提出一种基于改进混合高斯模型(GMM)和多特征融合的视频火焰检测算法。首先针对背景建模,提出了自适应高斯分布数和学习率的改进GMM方法,以提高前景提取效果和算法实时性;然后利用火焰颜色特征筛选出疑似火焰区域,再通过融合改进局部二值模式纹理和边缘相似度特征用于火焰检测。基于支持向量机设计火焰融合特征分类器并进行对比实验,在公开数据集上的实验结果表明,所提算法有效提高了背景建模效果,火焰检测准确率可达到92.26%,误检率低至2.43%。 Aiming at the problems of incomplete foreground extraction,low accuracy,and high false detection rate of the existing video image flame detection algorithms,a video flame detection algorithm based on improved Gaussian mixture model(GMM)and multi-feature fusion was proposed.Firstly,for background modeling,an improved GMM method with adaptive Gaussian distribution number and learning rate was proposed to improve the foreground extraction effect and algorithm real-time performance.Then the flame color characteristics were used to filter out the suspected flame regions,and local binary pattern texture and edge similarity features were used for flame detection.Based on support vector machine,a flame fusion feature classifier was designed and compared.Experimental results on the public datasets show that the algorithm proposed in this paper effectively improved the background modeling effect.The flame detection accuracy reached 92.26%,and the false detection rate was as low as 2.43%.
作者 张驰 孟庆浩 井涛 Zhang Chi;Meng Qinghao;Jing Tao(Institute of Robotics and Autonomous Systems,Tianjin Key Laboratory of Process Detection and Control,School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第4期128-137,共10页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61573252) 国家重点研发计划项目(2017YFC0306200)。
关键词 图像处理 火焰检测 视频图像 混合高斯模型 多特征融合 支持向量机 image processing flame detection video image Gaussian mixture model multi-feature fusion support vector machines
作者简介 井涛,E-mail:jingtao@tju.edu.cn。
  • 相关文献

参考文献10

二级参考文献129

  • 1武广富,吕震中.粗糙集理论在火焰图像处理及状态识别中应用[J].电力自动化设备,2007,27(5):84-87. 被引量:10
  • 2Borges P V K, Izquierdo E. A probabilistic approach for vision- based fire detection in videos[J]. IEEE Transaction on Circuits and Systerms for Video Technology,2010,20(5):721-731.
  • 3Liu Che-bin, AhujaN. Vision based firedeteetion [C]// Procee- dings of International Conference on Pattern Recognition, 2004: 134-137.
  • 4Grimson W E L, Stauffer C, Romano R, et al. Using adaptivetracking to classify and monitor activities in a site[C]//Procee- dings of IEE[Conference on Computer Vision and Pattern Reco- gnition. Washington,DC: 1998 : 22-29.
  • 5Stauffer C, Grimson W E L. Adaptive background mixture mo- dels for real-time tracking[C]//Prcceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Fort (2ollins, Colorado : 19 9 9.
  • 6Stauffer C. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2000,22(8) : 747-757.
  • 7Power P W,Schoonees J A. Understanding background mixture models for foreground segmentation[C]//Proceeding of Image and Vision Computing. New Zealand, 2002:267-271.
  • 8GB50116-2008火灾自动报警系统设计规范[S].北京:中国计划出版社,2008.
  • 9GBl5631-2008特种火灾探测器[S].北京:中国标准出版社.2008.
  • 10Celik T,Demire H.Fire detection in video sequences us- ing a generic color model[J].Fire Safety Journal, 2009, 44: 147-158.

共引文献99

同被引文献75

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部