期刊文献+

非确定模糊有穷自动机的ε-语言逼近 被引量:1

ε-language approximation of nondeterministic fuzzy finite automata
原文传递
导出
摘要 在max-*复合推理下引入了非确定模糊有穷自动机的概念,其中*是t-模运算。为了比较2个非确定模糊有穷自动机的行为,借助于[0, 1]上的一个实数ε,定义了2种ε-语言逼近,讨论了它们之间的关系。证明了非确定模糊有穷自动机和模糊有穷自动机之间是0-弱语言逼近的,即二者可以接受相同的模糊语言。此外,还讨论了2种ε-语言逼近的一些代数性质,特别地给出ε-语言逼近在并运算、*运算以及连接运算下的性质。最后,分析了ε-语言逼近的鲁棒性。 We have introduced the concept of nondeterministic fuzzy finite automata under max-* compositional inference for some t-norm *. In order to compare the behaviors of nondeterministic fuzzy finite automata, two ε-language approximations are given using some real number ε in [0,1]. Then we discuss the relationship of two ε-language approximations, and prove that nondeterministic fuzzy finite automata and fuzzy finite automata are 0-language approximated, that is to say they can accept same fuzzy language. In addition, some algebraic properties of two ε-language approximations are studied. In particular, we obtain that properties of them under union operation, *operation, and concatenation operation. Finally, the robustness of ε-language approximations is analyzed.
作者 王海辉 赵路瑶 李平 WANG Hai-hui;ZHAO Lu-yao;LI Ping(School of Mathematics and Information Science,Shaanxi Normal University,Xi'an 710119,Shaanxi,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2021年第3期37-43,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61673250,61672023) 中央高校基本科研业务费专项资金资助项目(GK201803008)。
关键词 模糊有穷自动机 非确定模糊有穷自动机 语言逼近 鲁棒性 fuzzy finite automata nondeterministic fuzzy finite automata language approximation robustness
作者简介 第一作者:王海辉(1994—),男,硕士研究生,研究方向为模糊自动机及其应用.E-mail:wanghmhui@snnu.edu.cn;通信作者:李平(1979-),女,副教授,硕士生导师,研究方向为模糊数学、模糊自动机理论与计算智能.E-mail:Hping@snnu.edu.cn。
  • 相关文献

参考文献3

二级参考文献16

  • 1沈恩绍.模型论逻辑与理论计算机科学[J].数学进展,1996,25(3):193-202. 被引量:10
  • 2[1]Rosser, J. B. , Turquette, A. R. , Many-Valued Logics, Amsterdam: North-Holland, 1952.
  • 3[2]Ying, M. S. , A new approach for fuzzy topology (Ⅰ) (Ⅱ) (Ⅲ), Fuzzy Sets and Systems, 1991, 39(3): 303-321; 1992,47(2): 221 232; 1993, 55(2): 193-207.
  • 4[3]Ying, M. S., Fuzzifying topology based on complete residuated lattice-valued logic (Ⅰ), Fuzzy Sets and Systems, 1993, 56(3): 337-373.
  • 5[4]Pavelka, J., On fuzzy logic Ⅰ, Ⅱ, Ⅲ, Zeitschr f math Logik und Grundlagen d Math, 1979, 25: 45-52; 119-134;447-464.
  • 6[5]Wang, G. J. , Non-classical Mathematical Logics and Approximate Reasoning (in Chinese), Beijing: Science Press, 2000,207-274.
  • 7[6]Ying, M. S., Automata theory based on quantum logic. (Ⅰ), Int. J. Theor. Phys., 2000, 39(4): 981-991.
  • 8[7]Ying, M. S. , Automata theory based on quantum logic. (Ⅱ), Int. J. Theor. Phys. , 2000, 39(11 ): 2545-2557.
  • 9[8]Wee, W. G., On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification, Ph.D. Thesis, Purdue University, 1967.
  • 10[9]Kandel, A., Lee, S. C., Fuzzy Switching and Automata: Theory and Applications, London: Grane Russak, 1980, 171-262.

共引文献21

同被引文献17

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部