期刊文献+

Co9S8/MoS2异质结构的构筑及电催化析氢性能研究 被引量:10

Construction of Co_(9)S_(8)/MoS_(2)Heterostructures for Enhancing Electrocatalytic Hydrogen Evolution Reaction
原文传递
导出
摘要 利用前驱物形貌导向法,成功制备了Co_(9)S_(8)/MoS_(2)异质结构催化剂,该催化剂在碱性析氢反应(HER)中表现出优异的催化活性及稳定性,其在10 mA·cm^(-2)处的过电势仅为84 mV.通过X射线粉末衍射(XRD)、透射电子显微镜(TEM)、电子自旋共振(ESR)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和同步辐射(XAFS)等表征,证明了CoS_(2)/MoS_(2)在H2氛围下煅烧形成Co_(9)S_(8)/MoS_(2)的过程中,CoS_(2)中Co的配位模式从部分八面体向Co9S8中的四面体转变,这种转变可活化MoS_(2)的惰性平面,从而使其更有利于吸附H^(*).除此之外,接触角数据表明:该催化剂具有良好的亲水性,有利于电解液渗透及气体分子的迅速扩散,从而促进HER反应速率.由于异质结构间具有强烈的相互作用,该催化剂可表现出良好的结构稳定性.本工作基于Co_(9)S_(8)/MoS_(2)异质结构的成功构筑及对其HER催化机理的充分探讨,为后续硫化物异质结及其在电催化中的应用提供了良好的思路和研究基础. The large-scale use of coal,oil,and natural gas will cause environmental pollution and resource shortages,which is incompatible with the sustainable development.Therefore,it is essential to the development of renewable energy.H2 has a high heat of combustion,and it’s combustion products do not include greenhouse gases,so it is considered as an ideal clean energy carrier.Industrial hydrogen production methods will bring CO_(2) inevitably.As an emerging energy conversion device,hydrogen produced by water splitting has simple equipment and little pollution,making it the first choice for clean energy in the future.Generally,the adsorption energy of hydrogen on the surface of precious metal catalysts is close to zero,and its hydrogen evolution reaction(HER)performance is the most prominent.Pt is an excellent HER catalyst.Commercial Pt/C has high alkaline HER performance,but its higher cost,material instability and resource scarcity limit its widespread applications.Therefore,this research is devoted to the development of high-activity,low-cost transition metal catalysts for HER by water splitting.Firstly,CoMoO4 nanorods were synthesized by hydrothermal method.Then,using the precursor morphology oriented strategy method,the activated Co_(9)S_(8)/MoS_(2) heterostructure catalyst was successfully prepared by sulfurating Co-MoO4 into CoS_(2)/MoS_(2) and further,calcining CoS_(2)/MoS_(2) nanorod in hydrogen atmosphere.X-rays diffraction(XRD),transmission electron microscopy(TEM),electron spin resonance(ESR),Raman spectra,X-ray photoelectron spectra(XPS)and synchrotron-based X-ray absorption fine structure(XAFS)characterizations exhibit that the Co coordination mode change from octahedron in CoS_(2) to tetrahedron in Co9S8,leading to the activation of inert basal plane in MoS_(2).Owing to this activation,the interlayer spacing of MoS_(2) is reduced and thus generate abundant defects.Meanwhile,the increased electrochemical surface area(ECSA)and roughness of the catalysts are more conducive to the adsorption of H^(*).The test of the contact angle data show that the electrode has good hydrophilicity,which can facilitate the penetration of electrolyte and diffusion of gas molecules quickly.When the current density is at 10 mA·cm^(-2) in 1 mol·L^(-1) KOH solution,an overpotential of 84 mV and a Tafel slope of 93 mV·dec^(-1) can be achieved.Due to the strong interaction between different components of the heterostructures,the nanorods possess good structural stability in alkaline solutions.This work highlights the vital role of the sulfides heterostructure construction in HER,opening a new way to advanced alkaline HER catalysts.
作者 张宇 王世兴 杨蕊 戴腾远 张楠 席聘贤 严纯华 Zhang Yu;Wang Shixing;Yang Rui;Dai Tengyuan;Zhang Nan;Xi Pinxian;Yan Chun-Hua(College of Chemistry and Chemical Engineering Lanzhou University,Lanzhou 730000,China)
出处 《化学学报》 SCIE CAS CSCD 北大核心 2020年第12期1455-1460,共6页 Acta Chimica Sinica
基金 国家自然科学基金(Nos.21931001,21922105) 甘肃省稀土功能材料创新平台(No.2019ZX-04) 111引智计划(No.B20027)资助.
关键词 形貌导向法 Co_(9)S_(8)/MoS_(2) 异质结构 亲水性 析氢反应 morphology oriented strategy Co_(9)S_(8)/MoS_(2) heterostructure hydrophilicity hydrogen evolution reaction
作者简介 席聘贤,E-mail:xipx@lzu.edu.cn,Tel.:0931-8912589,Fax:0931-8912582。
  • 相关文献

参考文献5

二级参考文献80

  • 1Du;P;Eisenberg;R.查看详情[J],Energy Environ Sci20126012.
  • 2Lewis;N.S;Nocera;D.G.查看详情[J],{H}Proceedings of the National Academy of Sciences(USA)200615729.
  • 3Service;R.F.查看详情[J],{H}SCIENCE2005548.
  • 4Hoffert;M.I;Caldeira;K;Jain;A.K;Haites;E.F Harvey;L.D Potter;S.D Schlesinger;M.E Schneider;S.H Watts;R.G Wigley;T.M.查看详情[J],{H}NATURE1998881.
  • 5Fillol;J.L;Codolà;Z;Garcia-Bosch;I;Gómez;L Pla;J.J Costas;M.查看详情[J],Nat Chem2011807.
  • 6Parent;A.R;Crabtree;R.H;Brudvig;G.W.查看详情[J],{H}Chemical Society Reviews20132247.
  • 7Liu;X;Wang;F.查看详情[J],Coord Chem Rev20121115.
  • 8Sartorel;A;Bonchio;M;Campagna;S;Scandola;F.查看详情[J],{H}Chemical Society Reviews20132262.
  • 9Osterloh;F.E.查看详情[J],{H}Chemical Society Reviews20132294.
  • 10McAlpin;J.G;Stich;T.A;Casey;W.H;Britt;R.D.Coord.查看详情[J],{H}Chemical Reviews20122445.

共引文献53

同被引文献67

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部