期刊文献+

基于GCN-LSTM的空气质量预测 被引量:16

Air Quality Prediction Based on GCN-LSTM
在线阅读 下载PDF
导出
摘要 随着我国环境监测技术的不断发展,环境空气质量的网格化监测体系越来越受到相关工作人员的青睐,为应对空气污染的网格化监测体系中的小型、微型监测站的空气质量预测问题,本文提出了一种基于GCN和LSTM的空气质量预测模型.首先利用GCN网络提取网格化监测体系中的小微型监测站之间的空间特征,然后再使用LSTM提取时间特征,最后使用线性回归层来综合时空特征并产生空气质量的预测结果.为了验证本文提出的预测模型的性能,我们使用了沈阳市浑南区的14个小微型监测站的空气质量监测数据进行实验.实验结果显示,基于GCN-LSTM的空气质量预测模型在空间关联较强的网格化监测中的小微型监测站上的预测结果的精度要优于单一的LSTM预测模型. With the development of environmental monitoring technology in China, the grid monitoring system of ambient air quality has received more attention from environmental workers. In order to solve the air quality prediction of small and miniature monitoring stations in the grid monitoring system of air pollution, we propose an air quality prediction model based on GCN and LSTM. First, GCN is applied to extract the spatial features between the small and miniature monitoring stations in the grid monitoring system. Then, LSTM is employed to extract the relevant temporal features. Finally, the linear regression layer is used to integrate the spatial and temporal features and get the prediction results of air quality. Furthermore, experiments are carried out on the air quality monitoring data from 14 small and miniature monitoring stations in Hunnan District, Shenyang, verifying the prediction effect of the proposed model. The experimental results show that the air quality prediction model based on GCN-LSTM is more accurate than the LSTM prediction model in terms of the prediction results on the small and miniature monitoring stations in the grid monitoring with strong spatial association.
作者 祁柏林 郭昆鹏 杨彬 杜毅明 刘闽 王继娜 QI Bo-Lin;GUO Kun-Peng;YANG Bin;DU Yi-Ming;LIU Min;WANG Ji-Na(University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Institute of Computing Technology,Chinese Academy of Sciences,Shenyang 110168,China;Shenyang Ecological Environment Monitoring Center,Liaoning Province,Shenyang 110000,China;Liaoning Advanced Equipment Manufacturing Base Construction Engineering Center,Shenyang 110001,China)
出处 《计算机系统应用》 2021年第3期208-213,共6页 Computer Systems & Applications
基金 辽宁省“兴辽英才计划”(XLYC1808004)。
关键词 网格化监测 GCN LSTM 空气质量预测 微型监测站 grid monitoring GCN LSTM air quality prediction micro monitoring station
作者简介 通讯作者:郭昆鹏,E-mail:guokunpeng18@mails.ucas.edu.cn。
  • 相关文献

参考文献7

二级参考文献66

  • 1陈柳.小波支持向量机在大气污染物浓度预测中的应用[J].环境科学与技术,2010,33(9):53-56. 被引量:6
  • 2王钰,郭其一,李维刚.基于改进BP神经网络的预测模型及其应用[J].计算机测量与控制,2005,13(1):39-42. 被引量:88
  • 3赵杰颖,周国飞,李祚泳.基于粒子群优化算法的投影寻踪回归模型及其在大气中的应用[A].中国气象学会2008年年会第二届研究生年会分会场论文集[C].北京:中国气象学会.2008.295-299.
  • 4Ihen N, Selici A T. Investigating the impacts of some meteoro- logical parameters on air pollution in Balikesir, Turkey [J]. En- vironmemal Monitoring and Assessment, 2008, 140 ( 1-3 ) : 267- 277.
  • 5Xue D, Yin J. Meteorological influence on predicting surface SO2 concentration from satellite remote sensing in Shanghai, Chi- na [J]. Environmental Monitoring and Assessment, 2014, 186 (5) : 2895-2906.
  • 6Barr6n-Adame J M, Cortina-Januehs M G, Vega-Corona A, et al. Unsupervised system to classify SO2 pollutant concentrations in Salamanca, Mexico [ J ]. Expert Systems with Applications, 2012, 39(1) : 107-116.
  • 7Sahina tt A, Bayatb C, U~anc O N. Application of cellular neu- ral network (CNN) to the prediction of missing air pollutant data [J]. Atmospheric Research, 2011, 101 : 314-326.
  • 8Osowski S, Garanty K. Forecasting of the daily meteorological pollution using wavelets and support vector machine [ J ]. Engi- neering Applications of Artificial Intelligence, 2007, 20 ( 6 ) : 745 -755.
  • 9Polat K. A novel data preprocessing method to estimate the air pollution ( SO2 ) : neighbor-based feature scaling (NBFS) [ J]. Neural Computing and Applications, 2012, 21 (8) : 1987-1994.
  • 10Wang P, Liu Y, Qin Z, et al. A novel hybrid forecasting model for PMlo and SO2 daily concentrations [ JJ. Science of The Total Environment, 2015, 505: 1202-1212.

共引文献365

同被引文献125

引证文献16

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部