期刊文献+

小波包分析和FastICA相结合对单通道脑电信号的去噪研究 被引量:1

Study on monopolar-channel EEG signal denoising by wavelet packet analysis combined with FastICA
在线阅读 下载PDF
导出
摘要 采用基于小波包分析的FastICA方法对单通道脑电信号进行去噪,由于脑电信号并不是独立的,分离信号和源信号对应关系也不确定,直接采用FastICA对多通道脑电信号进行处理,最终的去噪效果并不理想。因此先用小波包对单通道脑电信号进行分解,从而得到频带较窄的子带信号,可保证源信号具有一定的独立性,有利于噪声独立分量的分离和去除,也为单通道脑电信号的去噪提供了思路。从时域分析、傅里叶变换、功率谱密度分析以及信噪比和均方根误差的角度,对比多导联FastICA的去噪效果,可以发现所提出的方法较为有效。 The monopolar channel EEG signal is denoised with FastICA method based on wavelet packet analysis.For multi-channel EEG signals are not independent,and the corresponding relationship between the separated signals and the source signals is uncertain,it is not effective to denoise multi-channel EEG signals by FastICA alone.Therefore,a wavelet packet is used to decompose the monopolar-channel EEG signal first to obtain the sub-band signal with narrower frequency band,which can ensure that the source signals have a certain independence,so as to facilitate the separation and removal of independent components of noise.Therefore,it provides an idea for the denoising of monopolar-channel EEG signals.In the aspects of time domain analysis,Fourier transform,power spectral density analysis,signal-to-noise ratio(SNR)and root-mean-square error(RMSD),the denoising effect of multi-channel FastICA is compared with that of the method proposed in this study,from which it is found that the proposed method is more effective.
作者 姚健康 熊根良 YAO Jiankang;XIONG Genliang(Jiangxi Key Laboratory of Robotic and Welding Automation,School of Mechatronics Engineering,Nanchang University,Nanchang 330031,China)
出处 《现代电子技术》 2021年第7期60-65,共6页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61763030)。
关键词 小波包分解 独立成分分析 脑电信号去噪 信号处理 信号分解 去噪效果对比 wavelet packet decomposition independent component analysis EEG signal denoising signal processing signal decomposition denoising effect comparison
作者简介 姚健康(1995—),男,安徽明光人,硕士研究生,主要从事脑电信号研究;熊根良(1978—),男,江西高安人,博士,副教授,主要研究方向为人机交互及信号处理分析。
  • 相关文献

参考文献9

二级参考文献67

  • 1田京,罗志增.基于模糊熵的运动想像脑电信号特征提取[J].华中科技大学学报(自然科学版),2013,41(S1):92-94. 被引量:6
  • 2周怀来,李录明,罗省贤,李枚.基于小波变换的改进阈值函数自适应去噪方法[J].物探化探计算技术,2006,28(2):173-177. 被引量:13
  • 3马颖颖,张泾周,吴疆.脑电信号处理方法[J].北京生物医学工程,2007,26(1):99-102. 被引量:12
  • 4Romero S,Mananas MA,Barbanoj MJ.Ocular Reduction in EEG Signals Based on Adaptive Filtering,Regression and Blind Source Separation[J].Annals of Biomed Engin,2009,37(1):176-191.
  • 5Congedo M,Pailler GC,Jutten.On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics[J].Clin Neurophy,2008,119(12):2677-2686.
  • 6Inuso G,La Foresta F,Mammone N,et al.Wavelet-ICA methodology for efficient artifact removal from Electroencephalographic recordings[C]//International Joint Conference on Neural Networks.Orlando:IEEE,2007:1524-1529.
  • 7Delorme A,Sejnowski T,Makeig S.Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis[J].of Neurosci Meth,2007,34(4):1443-1449.
  • 8Clercq WD,Vergult A,Vanrumste B,et al.Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram[J].IEEE Trans Biomed Eng,2006,53(12):2583-2587.
  • 9Siew-Cheok NG,Raveendran P.Enhanced u rhythm extraction using blind source separation and wavelet transform[J].IEEE Trans Biomed Eng,2009,56(8):2024-2034.
  • 10Romero S,Mananas MA,Barbanoj MJ.A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables:A simulation case[J].Comp in Biolog and Med,2008,38(3):348-360.

共引文献79

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部