期刊文献+

基于ICEEMDAN-GRNN神经网络的往复泵故障诊断方法研究 被引量:8

Study on the Method of ICEEMDAN-GRNN Neural Network of Reciprocating Pump Fault Diagnosis
在线阅读 下载PDF
导出
摘要 往复泵作为石油石化行业重要的输送设备,通过振动监测手段来保证系统的安全稳定运行具有重要的现实意义。如何对往复泵的非平稳和非线性信号提取特征并进行准确识别是诊断中的关键问题。针对往复泵故障特征的提取,提出了一种利用ICEEMDAN-GRNN神经网络相结合的诊断方法。首先利用ICEEMDAN对采集的原始信号进行分解得到若干个IMF分量,然后计算IMF分量的奇异谱熵并构造特征向量,再将特征向量输入到GRNN神经网络进行训练和模式识别。研究表明:该方法可以有效提取往复泵的故障特征并进行准确的模式识别。 The reciprocating pump plays an important role in the petrochemical industry procedure,which is crucial in ensuring the systematic safety and stability through vibration monitoring method.How to extract non-stationary and nonlinear signals features of reciprocating pump and accurate recognition is the key problem in diagnosis.Aiming at the extraction of reciprocating mechanical fault features,ICEEMDAN-GRNN neural network algorithm are used to recognize the valve failure modes.The IMF components are obtained by decomposing the collected signals with the ICEEMDAN algorithm in calculating the singular spectral entropy and constructing the feature vector.The feature vector is input into the GRNN neural network for training and mode recognition.The study shows that the signal processing method can effectively extract the feature values of reciprocating compressor's valve faults,while the GRNN neural network algorithm could be used in following pattern recognition process with higher accuracy.
作者 别锋锋 都腾飞 庞明军 谷晟 BIE Feng-feng;DU Teng-fei;PANG Ming-jun;GU Sheng(School of Mechanical Engineering,Changzhou University,Jiangsu Changzhou213016,China)
出处 《机械设计与制造》 北大核心 2021年第3期127-131,共5页 Machinery Design & Manufacture
基金 国家自然科学基金(51376026)。
关键词 ICEEMDAN分解 GRNN神经网络 奇异谱熵 往复泵 ICEEMDAN Decomposition GRNN Neural Network Singular Spectrum Entropy Reciprocating Pump
作者简介 别锋锋,(1979-),男,湖北仙桃人,博士后,副教授,主要研究方向:机械设备状态监测与故障诊断,振动信号处理与分析。
  • 相关文献

参考文献4

二级参考文献29

  • 1张亢,程军圣,杨宇.基于局部均值分解与形态学分形维数的滚动轴承故障诊断方法[J].振动与冲击,2013,32(9):90-94. 被引量:19
  • 2廖志伟,叶青华,王钢,文福拴.基于GRNN的多故障自适应电力系统故障诊断[J].华南理工大学学报(自然科学版),2005,33(9):6-9. 被引量:30
  • 3周敏,李世玲.广义回归神经网络在非线性系统建模中的应用[J].计算机测量与控制,2007,15(9):1189-1191. 被引量:24
  • 4WINTER C. Hydrogen energy - abundant, efficient, clean : a de- bate over the energy system of change[ J]. International Journal of Hydrogen Energy, 2009, 34 : 1 - 52.
  • 5CLARK W W, RIFKIN J, OCONNOR T, et al. Hydrogen energy stations: along the roadside to the hydrogen economy[ J ]. Utilities Policy, 2005, 13(2) : 41 -50.
  • 6ELAOUD S, HADJ- TAIEB L, HADJ- TAIEB E. Leak detec- tion of hydrogen natural gas mixtures in pipes using the characteris- tics method of specified time intervals[ J ]. Journal of Loss Preven- tion in the Process Industries, 2010, 23 (3) : 637 - 645.
  • 7TIPPING Me. Sparse bayes learning and the relevance vector ma- chine[ J]. Machine Leaming Research, 2001 : 211 - 244.
  • 8SAMANTA B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms [ J ]. Mechan- ical System and Signal Processing, 2004, 18 (3) : 625 -644.
  • 9JACK L B, NANDIA K. Fault detection using support vector ma- chines and artificial neural networks, augmented by genetic algo- rithms[J]. Mechanical System Sand Signal Processing, 2002, 16 (2) : 373 -390.
  • 10HUANG X J, CHOI Y K, YUN K S, et al. Oscillating behaviour of hazardous gas on tin oxide gas sensor Fourier and wavelet transform analysis[J]. Sensors and Actuators B, 2006, 115(7) :357 -364.

共引文献33

同被引文献61

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部