期刊文献+

基于模型融合的低照度环境下车道线检测方法 被引量:10

Method of Lane Line Detection in Low Illumination Environment Based on Model Fusion
在线阅读 下载PDF
导出
摘要 针对低照度环境下车道线检测准确率低和稳定性差的问题,提出了一种基于模型融合的低照度车道线检测算法.采用基于ALTM(adaptive local tone mapping)算法改进的颜色平衡算法做数据增强处理,有利于车道线特征的提取;融合改进的Deeplabv3+模型和Unet模型,有效降低了过拟合现象;使用实例分割得到分割后的车道线图像.实验证明,改进的Unet模型和Deeplabv3+模型的mean_IOU(mean intersection-over-union)值分别达到了0.625,0.646,较原始模型分别提高了2%和4.6%,最终融合结果提升了0.01%.提升了低照度环境下车道线检测的稳定性和准确性. Aiming at the problem of low accuracy and poor stability of lane line detection in low illumination environment,an algorithm of lane line detection in low illumination environment based on model fusion was proposed.The improved color balance algorithm based on ALTM(adaptive local tone mapping)algorithm is adopted for data enhancement processing,which is beneficial for the extraction of lane line features.The improved Deeplabv3+model and Unet model are fused to reduce the overfitting.The segmented lane line image is obtained by instance segmentation.The experimental results show that the mean_IOU(mean intersection-over-union)values of the improved Unet model and Deeplabv3+model reach 0.625 and 0.646,respectively,which are 2%and 4.6%higher than the original model.The final fusion result increased by 0.01%.The stability and accuracy of lane line detection are promoted in low illumination environment.
作者 顾德英 王娜 李文超 陈龙 GU De-ying;WANG Na;LI Wen-chao;CHEN Long(School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第3期305-309,共5页 Journal of Northeastern University(Natural Science)
基金 河北省自然科学基金资助项目(F2019501044).
关键词 低照度环境 车道线检测 数据增强 模型融合 实例分割 low illumination environment lane line detection data enhancement model fusion instance segmentation
作者简介 顾德英(1964-),男,辽宁新民人,东北大学秦皇岛分校教授;Corresponding author:WANG Na,E-mail:1871692@stu.neu.edu.cn。
  • 相关文献

参考文献3

二级参考文献25

  • 1张志龙,李吉成,沈振康.一种保持图像细节的直方图均衡新算法[J].计算机工程与科学,2006,28(5):36-38. 被引量:40
  • 2彭波,王一鸣.低照度图像增强算法的研究与实现[J].计算机应用,2007,27(8):2001-2003. 被引量:40
  • 3Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.
  • 4Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.
  • 5Meylan L, Susstrunk S. High dynamic range image rendering with a retinex-based adaptive filter. IEEE Transactions on Image Processing, 2006, 15(9): 2820-2830.
  • 6Choi D H, Jang I H, Kim M H, Kim N C. Color image enhancement based on single-scale retinex with a JND-based nonlinear filter. In: Proceedings of IEEE International Symposium on Circuits and Systems. New Orleans, USA: IEEE, 2007. 3948-3951.
  • 7Zhang Y Q, Ding Y, Xiao J S, Liu J Y, Guo Z M. Visibility enhancement using an image filtering approach. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1): 1-6.
  • 8Li B, Wang S H, Geng Y B. Image enhancement based on Retinex and lightness decomposition. In: Proceedings of the 18the IEEE International Conference on Image Processing. Brussels: IEEE, 2011. 3417-3420.
  • 9Hanumantharaju M C, Ravishankar M, Rameshbabu D R, Ramachandran S. Color image enhancement using multiscale Retinex with modified color restoration technique. In: Proceedings of the 2011 Second International Conference on Emerging Applications of Information Technology. Kolkata: IEEE, 2011. 93-97.
  • 10Mukherjee J, Mitra S K. Enhancement of color images by scaling the DCT coefficients. IEEE Transactions on Image Processing, 2008, 17(10): 1783-1794.

共引文献49

同被引文献65

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部