摘要
黑龙港流域是中国季节性休耕的试点区域,利用遥感技术及时、准确监测该区域的农作物种植结构,对于精准评价休耕政策的实施效果具有重要意义。本研究以黑龙港流域南部区域为研究对象,采用2019年1-12月的21景Sentinel 2A/B为数据源,构建3种植被指数的时序数据集,结合作物典型时相多光谱数据,采用随机森林法提取研究区内冬小麦、夏玉米、棉花、大蒜、蔬菜等农作物信息,并结合野外调查数据对分类结果进行验证,对比分析不同特征参数提取农作物信息的精度。结果表明,归一化差值红边指数(NDRE1)+典型时相多光谱数据(S2_(0831))取得了最高的总体精度和Kappa系数,其值分别为87.27%和0.85。采用归一化差分植被指数(NDVI)+S2_(0831),冬小麦-夏玉米、大蒜-夏玉米2种双峰型轮作农作物的用户精度最高,分别为94.92%和86.41%。采用S2_(0831)+NDRE1,蔬菜及棉花2种单峰型农作物的用户精度最高,分别为91.95%和91.67%。因此,在黑龙港流域农作物的精细分类研究中,结合Sentinel 2A/B植被指数时序数据与典型时相多光谱数据进行分类的精度较高,可用于该区域农作物种植结构监测及休耕政策执行效果评价。
Heilonggang river basin is the pilot area of seasonal fallow in China,using remote sensing technology for timely and accurately monitoring the crop planting structure in this area is of great significance for accurately evaluating the implementation effect of fallow policy.In this study,the southern area of Heilonggang river basin was taken as the research region,and 21 sceneries Sentinel 2A/B from January to December 2019 was used as the data source,the time series data set of three vegetation indices was constructed,combined with the typical time-phase multi spectral data of crops,the winter wheat,summer corn,cotton,garlic,vegetables and other crops in the study area were extracted by random forest classification method.The classified results were verified by combining the above data with the data from field investigation to compare the precision of different characteristic parameters in extracting crop information.The results showed that normalized difference red edge index(NDRE1)+typical time phase multispectral data(S2_(0831))acquired the best overall accuracy and Kappa coefficient,the value were 87.27%and 0.85,respectively.From the perspective of users,winter wheat-summer maize and garlic-summer maize got the highest accuracy by using normalized difference vegetation index(NDVI)+S2083,the user accuracy was 94.92%and 86.41%,respectively.In addition,vegetables and cotton got the highest accuracy by using S2_(0831)+NDRE1,the user accuracy was 91.95%and 91.67%,respectively.Therefore,the combination of time series Sentinel 2A/B vegetation index and typical time-phase multi-band data has a better effect for the fine classification of crops in Heilonggang river basin,which can be used for the monitoring of crop planting structure and the evaluation of fallow policy effects.
作者
宋宏利
雷海梅
尚明
SONG Hong-li;LEI Hai-mei;SHANG Ming(College of Geosciences and Engineering, Hebei University of Engineering, Handan 056038, China)
出处
《江苏农业学报》
CSCD
北大核心
2021年第1期83-92,共10页
Jiangsu Journal of Agricultural Sciences
基金
河北省自然科学基金项目(D2019402067)
河北省高等学校科学技术研究重点项目(ZD2017212)
河北省研究生示范课建设项目(KCJSX2019065)。
作者简介
宋宏利(1980-),男,河北抚宁人,博士,副教授,主要从事3S技术集成及应用研究,(E-mail)songholi2003@163.com。