期刊文献+

基于共振稀疏分解和松鼠优化算法的滚动轴承故障诊断 被引量:14

Rolling bearing fault diagnosis with a resonance-based sparse decomposition and squirrel optimization algorithm
在线阅读 下载PDF
导出
摘要 共振稀疏分解方法在滚动轴承故障诊断方面得到广泛应用,分解参数的选取对故障分离效果起决定性影响。为保证参数选择的准确性,提出基于松鼠算法的自适应共振稀疏分解多参数优化方法。以信号低共振分量峭度最大作为目标,使用松鼠算法同时优化共振稀疏分解的品质因子与权重系数;利用最优品质因子和权重系数对滚动轴承振动信号进行共振稀疏分解,得到高低共振分量;对低共振分量进行希尔伯特包络谱分析。通过仿真试验和应用实例证明,所提方法可以有效提取轴承的微弱故障信息,实现共振稀疏分解小波基函数库与耗散函数之间的最优匹配,具有较高的分离精度。 The resonance-based sparse decomposition method has been widely used in fault diagnosis of rolling bearings.The selection of decomposition parameters has a decisive impact on the effect of fault separation.To ensure the accuracy of parameter selection,an adaptive resonance-based sparse decomposition method with multi-parameter optimization was proposed.Firstly,aiming at maximizing the kurtosis of low resonance component,the squirrel algorithm was used to optimize the quality factor and weight coefficient at the same time.Secondly,the vibration signal of a rolling bearing was decomposed by the optimal quality factor and weight coefficient to obtain the high resonance-based component and the low resonance component.Finally,the Hilbert envelope spectrum analysis was performed on the low resonance component.The simulation experiment and application examples show that the proposed method can effectively extract the weak fault information of the bearing,realize the optimal matching between the wavelet basis function library and the cost function,and has high separation accuracy.
作者 夏俊 贾民平 XIA Jun;JIA Minping(School of Mechanical Engineering,Southeast University,Nanjing 211189,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第4期250-254,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(51675098)。
关键词 共振稀疏分解 可调品质因子小波变换 松鼠算法 故障诊断 resonance-based sparse signal decomposition tunable Q-factor wavelet transform squirrel search algorithm fault diagnosis
作者简介 第一作者:夏俊,男,硕士生,1995年生;通信作者:贾民平,男,博士,教授,1960年生。
  • 相关文献

参考文献3

二级参考文献18

  • 1YuDejie ChengJunsheng YangYu.FAULT DIAGNOSIS APPROACH FOR ROLLER BEARINGS BASED ON EMPIRICAL MODE DECOMPOSITION METHOD AND HILBERT TRANSFORM[J].Chinese Journal of Mechanical Engineering,2005,18(2):267-270. 被引量:14
  • 2Bayrram I, Selesick I W. Frequency domain design of overcomplete rational-dilation wavelet transforms [J]. IEEE Transactions on Signal Process, 2009, 57 (8): 2 957-2 972.
  • 3Selesnick I W. Wavelet transform with tunable Q- factor [J]. IEEE Transactions on Signal Processing, 2011,59(8):3 560 -3 575.
  • 4Selesnick I W. Resonance-based signal decomposition: a new sparsity-enabled signal analysis method [J]. Signal Processing,2011,91(12):2 793-2 809.
  • 5Bobin J, Starck J L, Fadili J M, et al. Morphological component analysis., an adaptive thresholding strategy [J]. IEEE Transactions on Image Processing,2007,16 (11):2 675-2 681.
  • 6Luo J,Yu D,Liang M. A kurtosis-guided adaptive de- modulation technique for bearing fault detection based on tunable-Q wavelet transform [J]. Measurement Science and Technology, 2013,24 (5) : 055009.
  • 7Al-Raheem K F, Roy A, Ramachandran K P, et al. Rolling element bearing faults diagnosis based on auto- correlation of optimized., wavelet de-noising technique [ J ]. The International Journal of Advanced Manufacturing Technology, 2009,40(3-4) : 393-402.
  • 8A1-Raheem K F, Roy A, Ramachandran K P, et al. Rolling element bearing fault diagnosis using laplace- wavelet envelope power spectrum [J]. EURASIP Journal on Applied Signal Processing, 2007, (1): 70-83.
  • 9Goldberg D E, Holland J H. Genetic algorithms and machine learning [J]. Machine Learning, 1988, 3 ( 2 ) : 95-99.
  • 10Vela C R, Varela R, Gonzalez M A. Local search and genetic algorithm for the job shop scheduling problem with sequence dependent setup times [J]. Journal of Heuristics, 2010,16 (2) :139-165.

共引文献59

同被引文献131

引证文献14

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部