期刊文献+

Application of a hybrid algorithm ePSOSA in well test parameter estimation

原文传递
导出
摘要 Estimating the significance parameters,such as skin factor,permeability,wellbore storage coefficient,are the most component of transient pressure analysis.Many optimization algorithms have been applied to parametric estimation and realized the minimum error of well test curve.Although a flexible heuristic particle swarm optimization can hunt optimal solution rapidly,it is difficult to search further in the vicinity of the optimal solution.Hence,to alleviate the local optimum and premature convergence,a global hybrid algorithm referred to as particle swarm simulated annealing is proposed,and proves to have better performance of convergence and accuracy than traditional methods,which are more suitable for parameter estimation.
出处 《Petroleum》 2018年第4期430-436,共7页 油气(英文)
基金 the scientific research starting project of SWPU(no.2014QHZ031).
作者简介 Corresponding author:Chen Zhang,E-mail address:czhangmath@qq.com。
  • 相关文献

参考文献1

二级参考文献10

  • 1Chu, S.C.,Tsai, P.,Pan, J.S.Parallel Particle Swarm Optimization Algorithms with Adaptive Simulated An-nealing[].Studies in Computational Intelligence Book Se-ries.2006
  • 2Gaing,Z.L.A particle swarm optimization approachfor optimum design of PID controller in AVR system[].IEEE Transactions on Power Systems.2004
  • 3Hu, X.,Shi, Y.,Eberhart, R.Recent Advances in Parti-cle Swarm[].IEEE Congress on Evolutionary Computa-tion.2004
  • 4Mingoti, S.A.,Lima, J.O.Comparing SOM neural network with fuzzy c-means, k-means and traditional hi-erarchical clustering algorithms[].European Journal of Operational Research.2006
  • 5Miranda, V.,Fonseca, N.EPSO—Evolutionary Particle Swarm Optimization, a New Algorithm with Applica-tions in Power Systems[].IEEE/PES Transmission and Distribution Conf and Exhibition: Asia Pacific.2002
  • 6Niknam,T.An Approach Based on Particle Swarm Optimization for Optimal Operation of Distribution Network Considering Distributed Generators[].IEEE nd Annual Conf on Industrial Electronics.2006
  • 7Niknam, T.,Bahmani Firouzi, B.,Nayeripour, M.An efficient hybrid evolutionary algorithm for cluster analy-sis[].World Appl Sci J.2008
  • 8Niknam, T.,Olamaie, J.,Amiri, B.A hybrid evolu-tionary algorithm based on ACO and SA for cluster analysis[].Journal of Applied Sciences.2008
  • 9Olamaei, J.,Niknam, T.,Gharehpetian, G.Application of particle swarm optimization for distribution feeder re-configuration considering distributed generators[].Applied Mathematics and Computation.2008
  • 10Cai, X.,Cui, Z.,Zeng, J.,Tan, Y.Performance-dependent adaptive particle swarm optimization[].Int J Innov Comput Inf Control.2007

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部