期刊文献+

风偏角对方形断面结构驰振不稳定性影响 被引量:2

Effect of yaw angle on the galloping instability of slender square structures
在线阅读 下载PDF
导出
摘要 方形断面的细长结构广泛的应用在工程领域,其在特定风向角和特定的风速范围下会发生具有较大危害性的驰振,目前斜置或者斜风向作用下的细长方柱驰振不稳定性的规律尚不清楚。采用刚性模型测压风洞试验,通过对斜置方柱气动力的分析,讨论了风偏角对方柱气动力的影响,基于准定常假设,分析了考虑风偏角的方柱驰振不稳定性。结果表明:方形断面是典型的驰振不稳定断面形状;随着来流与柱体轴向夹角的变小,方形断面的驰振不稳定区域增大,斜风向下的方柱更容易发生驰振,需要在类似结构抗风设计中引起重视。 The onset of galloping for slender structures with square cross-section,which are widely used in engineering,may induce structural unsafety in particular wind directions.However,the galloping instability of skewed square cylinders,a kind of slender structures under wind with nonzero yaw angle is still unclear.In the present study,the aerodynamic forces were measured by wind pressure tests on the rigid sectional model in a wind tunnel.The effect of yaw angle on aerodynamic forces was discussed.Meanwhile,the galloping instability of skewed square cylinders was analyzed based on the quasi-steady assumption.The results show that the galloping may occur on square cylinders.Its unstable region increases with the decrease of the angle between the wind direction and the axis of the cylinder.The skewed square cylinder is more likely to encounter galloping.This tendency should be considered in designing slender square structures.
作者 马文勇 张璐 张晓斌 邓然然 MA Wenyong;ZHANG Lu;ZHANG Xiaobin;DENG Ranran(Innovation Center for Wind Engineering and Wind Energy Technology of Hebei Province,Shijiazhuang 050043,China;School of Civil Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;Jinhua Traffic Planning and Institute Company Limited,Jinhua 321000,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第2期171-175,184,共6页 Journal of Vibration and Shock
基金 河北省自然科学基金(E2017210107) 河北省教育厅重点项目(ZD2018063)。
关键词 斜置方柱 风洞试验 风偏角 气动力 驰振不稳定性 skewed square cylinder wind tunnel test yaw angle aerodynamic forces galloping instability
作者简介 第一作者:马文勇,男,博士,教授,1981年生。
  • 相关文献

参考文献6

二级参考文献98

  • 1王新荣,顾明,全涌.低紊流度下二维矩形截面柱体模型表面风压分布的雷诺数效应[J].建筑结构学报,2015,36(1):143-149. 被引量:15
  • 2钟国华,梁岸,孙晓峰.基于浸入式边界的流固耦合的非定常数值模拟研究[J].工程热物理学报,2007,28(3):399-402. 被引量:8
  • 3刘延柱.高等动力学[M].北京:高等教育出版社,2000..
  • 4孙炳达.自动控制原理[M].北京:机械工业出版社,2005.
  • 5Desai Y M, Shah A H, Popplewell N. Galloping analysisfor two-degree-of-freedom oscillator [J]. Journal of Engineering Mechanic s, 1990, 116(12): 2583 -- 2602.
  • 6DenHartog J P. Transmission line vibration due to sleet [J]. AIEE Transaction, 1932, 51(4): 1074--1076.
  • 7DenHartog J P. Mechanical vibrations [M]. New York: McGraw Hill, 1956.
  • 8Nigol O, Buchan P G. Conductor galloping-Part II: Torsional mechanism [J]. Power Apparatus and Systems, IEEE Transactions on, 1981, PAS- 100(2): 708-- 720.
  • 9Nigol O, Buchan P G. Conductor galloping Part I: Den-hartog mechanism [J]. Power Apparatus and Systems, IEEE Transactions on, 1981, PAS-100(2): 699--707.
  • 10Yu P, Desai Y M, Shah A H, et al. Three-degree-of- freedom model for galloping. Part I: Formulation [J]. Journal of Engineering Mechanics, 1993, 119(12): 2404--2425.

共引文献47

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部