期刊文献+

飞行环境模拟系统多容腔流-固传热建模 被引量:2

Multi-Volume Fluid-Solid Heat Transfer Modeling for Flight Environment Simulation System
在线阅读 下载PDF
导出
摘要 为了提升高空台飞行环境模拟系统(FESS)数值仿真平台的置信度,提出了一种多容腔流-固传热的建模方法,该方法考虑了混合器气流掺混、流-固传热、管道压力损失等因素的影响;建立了包括调节阀流量特性、液压伺服系统、混合器、混合器出口导流栅流量特性、整流子系统、管道容腔模型在内的部件模型库,并基于该模型库构建了仿真平台。为了验证本文建模方法的有效性,采用两次掺混试验数据对仿真模型进行对比验证表明,仿真结果与试验测量结果动态变化趋势基本一致,且温度、压力的最大误差分别不大于2.5K,2kPa。为了分析FESS控制系统的能力,假定了一次典型的发动机试验条件来进行仿真分析,仿真结果表明,FESS控制系统具备进行发动机平飞加速和等马赫数爬升试验的能力。 To improve modeling precision of digital simulation platform of flight environment simulation system(FESS)of Altitude Ground Test Facilities(AGTF),a multi-volume modeling method considering fluid-solid heat transfer is proposed.Considering the influence of mixer airflow mixing,fluid-solid heat transfer,and pipe pressure loss,a component model library was set up including control valve flow characteristic model,hydraulic servo system model,mixer model,mixer outlet air fence flow characteristic model,flow straightener subsystem model,and pipe volume model.A digital simulation platform of FESS is established based on the library.In order to verify the effectiveness of the modeling method proposed in this paper,two sets of mixing test data were used to do simulation verification,and the comparison results show that the dynamic variation trends of simulation and measurement result are basically the same and the maximum errors of temperature and pressure are less than2.5 K and 2 kPa,respectively.To analysis the ability of FESS control system,a typical engine test condition is supposed to do the simulation analysis.The simulation results show that the FESS control system has the ability to do the Mach Dash and Zoom-Climb test.
作者 朱美印 王曦 裴希同 张松 但志宏 缪柯强 刘佳帅 姜震 ZHU Mei-yin;WANG Xi;PEI Xi-tong;ZHANG Song;DAN Zhi-hong;MIAO Ke-qiang;LIU Jia-shuai;JIANG Zhen(School of Energy and Power Engineering,Beihang University,Beijing 100191,China;Collaborative Innovation Center for Advanced Aero-Engine,Beijing 100191,China;Science and Technology on Altitude Simulation Laboratory,AECC Sichuan Gas Turbine Establishment,Mianyang 621703,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2020年第12期2848-2859,共12页 Journal of Propulsion Technology
关键词 高空模拟试验台 飞行环境模拟系统 多容腔建模 流-固传热 数值仿真 Altitude ground test facilities Flight environment simulation system Multi-volume modeling Fluid-solid heat transfer Digital simulation
作者简介 通讯作者:朱美印,博士生,研究领域为航空发动机控制、高空台数字仿真平台研究以及鲁棒控制等,E-mail:mecalzmy@163.com。
  • 相关文献

参考文献12

二级参考文献42

  • 1李刚团,李继保,周人治.涡轮-冲压组合发动机技术发展浅析[J].燃气涡轮试验与研究,2006,19(2):57-62. 被引量:20
  • 2杨世忠,邢丽娟.调节阀流量特性分析及应用选择[J].阀门,2006(5):33-36. 被引量:31
  • 3王芳,高双林.高超声速巡航导弹理想动力系统——TBCC发动机及其关键技术[J].飞航导弹,2007(11):49-53. 被引量:5
  • 4刘增文. 涡轮基组合循环发动机概述[R]. 西安:西北工业大学,2015.
  • 5Kobayashi H,Tanatsugu N. Optimization method on TSTOspaceplane system powered by airbreather[R]. AIAA2001-3965,2001.
  • 6Thomas S R. TBCC discipline overview-hypersonics proj.ect[C]. 2011 Technical Conference. 2011.
  • 7Thomas S R,Walker J F. Fundamental aeronautics pro.gram-hypersonics project:overview of the turbine basedcombined cycle discipline[C]. NASA 2009 Annual Meet.ing. 2009.
  • 8McDaniel J C,Chelliah H,Goyne C P,et al. US NationalCenter for hypersonic combined cycle propulsion:an over.view[R]. AIAA 2009-7280,2009.
  • 9Sanders B W,Weir L J. Aerodynamic design of a du.al-flow Mach 7 hypersonic inlet system for a tur.bine-based combined-cycle hypersonic propulsion system[R]. NASA/CR- 2008-215214,2008.
  • 10Auslender A H,Suder K L,Thomas S R. An overview ofthe NASA FAP hypersonics project airbreathing propul.sion research[R]. AIAA 2009-7277,2009.

共引文献63

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部