期刊文献+

基于CFO的海上风电场微观选址优化算法研究 被引量:5

Study on the optimization algorithm of wind farm micro-siting based on CFO in offshore
在线阅读 下载PDF
导出
摘要 海上风电场用海面积有限,尾流影响比陆上大,微观选址是其规划设计的关键技术。传统优化算法大多采用离散化变量,使得潜在解空间减少到有限个,难以达到最优化的效果。为了提高海上风电场微观选址优化效率,文章提出了一种基于中心引力优化(CFO)算法的海上风电场微观选址方法。该算法使用实数编码,通过将微观选址优化的变量假设为天体,各个天体之间相互作用,达到平衡的原理,具有可能得到全局最优解和效率高的优点。使用该算法对海上风电场微观选址优化进行仿真,并与现有方法比较。结果表明,所提出的算法得到的排布方式发电量最高,并具有优化精度高、速度快和优化排布较为均匀的特点。该研究结果可以为实际工程应用提供参考。 The sea area of offshore wind farm is limited,and the influence of wake is greater than that of land.Micro site selection is the key technology of its planning and design.The traditional optimization algorithms mostly use discrete variables,which reduces the potential solution space to a limited number,so there are problems that the optimal solution may be missing,and the optimal effect cannot be achieved.In order to improve the optimization efficiency of wind farm micro-siting in offshore,a micro-siting optimization method for offshore wind farm based on central force optimization(CFO)algorithm is proposed in this paper.The algorithm uses real number coding and assumes that the variables of micro location optimization are celestial bodies,and the interaction between them achieves the principle of balance.It has the advantages of global optimal solution and high efficiency.This paper uses this algorithm to the optimization simulation of the wind farm micro-siting in offshore,and comparing with the existing methods,the results show that the CFO algorithm has the highest power generation,high optimization accuracy,fast speed,and relatively uniform optimal layout,which can be applied to engineering.The research of this paper can provide reference for practical engineering application.
作者 周川 蔡彦枫 王俊 王洁 Zhou Chuan;Cai Yanfeng;Wang Jun;Wang Jie(Guangdong Electric Power Survey,Design and Research Institute Co.,Ltd.,China Energy Engineering Group,Guangzhou 510663,China;Guangdong Kenuo Surveying Engineering Co.,Ltd.,Guangzhou 510663,China;Energy and Electric College,Hohai University,Nanjing 211100,China)
出处 《可再生能源》 CAS CSCD 北大核心 2021年第1期67-73,共7页 Renewable Energy Resources
基金 2018年度广东省促进经济发展专项基金(海洋经济发展用途)项目“广东海域风资源分布状况与风能储量调查”(GDME-2018B001)。
关键词 海上风电场 微观选址 中心引力优化算法 实数编码 wind farm in offshore micro-siting central force optimization real coding
作者简介 周川(1986-),男,硕士,高级工程师,主要从事电力工程水文气象相关工作。E-mail:zhouchuan@gedi.com.cn。
  • 相关文献

参考文献4

二级参考文献85

  • 1陈树勇,申洪,张洋,卜广全,印永华.基于遗传算法的风电场无功补偿及控制方法的研究[J].中国电机工程学报,2005,25(8):1-6. 被引量:124
  • 2丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. 被引量:220
  • 3R A Formato. Central force optimization: A new metaheuristic with applications in applied electromagnetics [ J ]. Progress in Electromagnetics Research PIER,2007,77 : 425 - 449.
  • 4S He, et al. Group search optimizer:An optimization algorithm inspired by animal searching behavior[ J]. IEEE Transactions on Evolutionary Computation, 2009,13 (5) : 973 - 990.
  • 5Jing Cai, W David Pan. On fast and accttrate block -mo- tion estimation algorithms using particle swarm optimization[J].Information Sciences, 2012,197(15) :53 - 64.
  • 6R F Tavares, et al. An ant colony optimization approach to a pemautational flowshop scheduling problem with out,sourcing al- lowed[ J ]. Computers & Operations Research, 2011,38 ( 9 ) : 1286- 1293.
  • 7Green II,et al. Training neural networks using central force op- timization and particle swarm optimization: insights and com- parisons[ J ]. Expert Systems with Applications, 2012, 39 ( 1 ): 555 - 563.
  • 8K R Mahmoud. CentTal force optimization: Nelder-Mead hybrid algorithm for rectangular microstrip antenna design[ J]. Electro- magnetics, 2011,31 (8) : 8866 - 8872.
  • 9Ali Haghighi, Helena, et al. Detection of leakage freshwater and friction factor calibration in drinking networks using cen- tral force optimization[ J ]. Water Resoulr Manage, 2012, 26 (8) : 2347 - 2363.
  • 10R A Formato. Improved CFO algorithm for antenna optimiza- tion[J]. Progress in Electromagnetics Research, 2010, 19: 405 - 425.

共引文献320

同被引文献71

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部