期刊文献+

微生物数字全息显微图像的嵌入式分类系统

Digital Holographic Image Classification of Microorganisms Based on Embedded System
在线阅读 下载PDF
导出
摘要 微生物识别对于水质检测及污水处理领域具有重要意义,传统方法效率低下,需要大型仪器、人工干预.针对上述问题,本文提出一种嵌入式平台下微生物数字全息显微图像分类系统.本文使用数字全息显微镜采集微生物图像,引入卷积神经网络进行分类计算,利用Tengine架构在嵌入式平台部署神经网络算法,构建实现了GoogLeNet、AlexNet、VGG16Net等模型,实现在Whoi微生物数据集上的分类检测.使用精简的GoogLeNet-Lite网络在国产嵌入式平台RK3399达到94.15%的准确率,以及12.7fps的运算速度.实验结果说明,采用卷积神经网络,在嵌入式平台RK3399上进行数字全息图像分类,既满足了快速检测的要求,同时也解决了系统体积问题,验证了本方法的有效性. Microbial identification is of great significance in the field of water quality detection and sewage treatment. Traditional methods are inefficient and require large-scale instruments and manual intervention. In view of the above problems,this paper proposes a microbe digital holographic microscopic image classification system on an embedded platform. In this paper,a digital holographic microscope is used to collect microbial images,and a convolutional neural network is introduced for classification calculation. Tengine architecture is used to deploy neural network algorithms on the embedded platform. M odels such as GoogLeNet,AlexNet,VGG16 Net and other models are constructed and implemented to achieve classification on the Whoi microbial dataset. It achieves an accuracy of94. 15% and an operation speed of 12. 7 fps in the domestic embedded platform RK3399 by using a simplified GoogLeNet-Lite network. The experimental results show that the digital holographic image classification on the embedded platform RK3399 by using a convolutional neural network not only satisfies the requirements of rapid detection,but also solves the system volume problems,w hich verifies the effectiveness of this method.
作者 陈朋 戴陈统 宫平 王海霞 CHEN Peng;DAI Chen-tong;GONG Ping;WANG Hai-xia(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China;College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第12期2595-2600,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(U1909203)资助 浙江省重点研发计划项目(2019C01007)资助 浙江省属高校基本科研业务费专项资金项目(RF-C2019001)资助。
关键词 嵌入式系统 数字全息显微 卷积神经网络 微生物分类 embedded systems digital holographic microscopy convolutional neural networks microorganism classification
作者简介 陈朋,男,1981年生,博士,教授,博士生导师,研究方向为模式识别、嵌入式系统设计;戴陈统,男,1993年生,硕士研究生,研究方向为模式识别、嵌入式系统设计;宫平,男,1995年生,硕士研究生,研究方向为模式识别、嵌入式系统设计;王海霞,女,1983年生,博士,副教授,研究方向为图像处理与模式识别.
  • 相关文献

参考文献6

二级参考文献86

  • 1范琦,赵建林,向强,徐莹,陆红强,李继锋.改善数字全息显微术分辨率的几种方法[J].光电子.激光,2005,16(2):226-230. 被引量:28
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:170
  • 3戴君伟,王博亮,谢杰镇,骆庭伟,焦念志.海洋赤潮生物图像实时采集系统[J].高技术通讯,2006,16(12):1316-1320. 被引量:6
  • 4王岩峰,张杰,孙培光,于衍桂,丁永耀.用于海洋现场监测的小型叶绿素a荧光计和浊度计[J].海洋技术,2007,26(1):29-33. 被引量:9
  • 5L J Kricka, P Fortina. Analytical ancestry: “firsts” in fluorescent labeling of nucleosides, nucleotides, and nucleic acids[J]. Clinical Chemistry, 2009, 55(4): 670-683.
  • 6C G Rylander, D P Davé, T Akkin, et al.. Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy[J]. Opt Lett, 2004, 29(13): 1509-1511.
  • 7S Yoshida, S Tanaka, M Hirata, et al.. Optical biopsy of GI lesions by reflectance-type laser-scanning confocal microscopy[J]. Gastrointestinal Endoscopy, 2007, 66(1): 144-149.
  • 8T Ikeda, G Popescu, R R Dasari, et al.. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Opt Lett, 2005, 30(10): 1165-1168.
  • 9N Lue, W Choi, G Popescu, et al.. Quantitative phase imaging of live cells using fast Fourier phase microscopy[J]. Appl Opt, 2007, 46(10): 1836-1842.
  • 10P J Rodrigo, D Palima, J Glückstad. Accurate quantitative phase imaging using generalized phase contrast[J]. Opt Express, 2008, 16(4): 2740-2751.

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部