期刊文献+

EXISTENCE AND UNIQUENESS OF THE POSITIVE STEADY STATE SOLUTION FOR A LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH A CROWDING TERM 被引量:1

在线阅读 下载PDF
导出
摘要 This paper deals with a Lotka-Volterra predator-prey model with a crowding term in the predator equation.We obtain a critical value λ1^D(Ω0),and demonstrate that the existence of the predator inΩ0 only depends on the relationship of the growth rateμof the predator and λ1^D(Ω0),not on the prey.Furthermore,whenμ<λ1^D(Ω0),we obtain the existence and uniqueness of its positive steady state solution,while whenμ≥λ1^D(Ω0),the predator and the prey cannot coexist inΩ0.Our results show that the coexistence of the prey and the predator is sensitive to the size of the crowding regionΩ0,which is different from that of the classical Lotka-Volterra predator-prey model.
作者 Xianzhong ZENG Lingyu LIU Weiyuan XIE 曾宪忠;刘玲妤;谢伟圆(School of Mathematics and Computing Science,Hunan University of Science and Technology,Xiangtan 411201,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2020年第6期1961-1980,共20页 数学物理学报(B辑英文版)
基金 the Hunan Provincial Natural Science Foundation of China(2019JJ40079,2019JJ50160) the Scientific Research Fund of Hunan Provincial Education Department(16A071,19A179) the National Natural Science Foundation of China(11701169)。
作者简介 Corresponding author:曾宪忠,E-mail:zxzh217@sohu.com;刘玲妤,E-mail:591283884@qq.com;谢伟圆,E-mail:2310945546@qq.com。
  • 相关文献

二级参考文献60

  • 1Arino O, Mikram J, Chattopadhyay J. Infection on prey population may act as a biological control in ratio-dependent predator-prey model. Nonlinearity, 2004, 17:1101-1116.
  • 2Arditi R, Ginzburg L R. Coupling in predator-prey dynamics: ratio-dependence. J Theor Biol, 1989, 139: 311-326.
  • 3Amann H, L6pez-G6mez J. A priori bounds and multiple solutions for superlinear indefinite elliptic prob- lems. J Differential Equations, 1998, 146:336-374.
  • 4Berestycki H, Nirenberg L, Varadhan S R S. The principle eigenvalue and maximum principle for second- order elliptic operators in general domains. Comm Pure Appl Math, 1994, 47(1): 47 -92.
  • 5Br6zis H, Oswald L. Remarks on sublinear elliptic equations. Nonlinear Analysis: TMA, 1986, 10:55- 64.
  • 6Cantrell R S, Cosner C. Diffusive logistic equations with indefinite weights: Population models in disrupted environments. Proc Roy Soc Edinburgh Sect A, 1989, 112(3/4): 293-318.
  • 7Cirstea F C, Radulescu V. Existence and uniqueness of blow-up solutions for a class of logistic equations. Comm Comtemp Math, 2002, 4:559-586.
  • 8Cirstea F C, Radulescu V. Uniqueness of the blow-up boundary solution of logistic equations with absorb- tion. C R Acad Sci Paris Ser I, 2002, 335:447- 452.
  • 9Cirstea F C, Radulescu V. Asymptotics of the blow-up boundary solution of logistic equations with ab- sorption. C R Acad Sci Paris Ser I, 2003, 336:231-236.
  • 10Cano-Casanova S, Ldpez-Gdmez J. Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems. J Differential Equations, 2002, 178(1): 123- 211.

共引文献6

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部