摘要
针对故障状态下的滚动轴承振动信号非线性非平稳性强、噪声干扰大导致的故障敏感特征提取难的问题,在对轴承振动信号进行局域均值分解(local mean decomposition,LMD)的基础上,提出了一种基于故障敏感分量的特征提取与改进K近邻分类器(K-nearest neighbor classifier,KNNC)的故障状态辨识方法。该方法采用相关系数法对LMD分解出的振动分量进行故障敏感性的量化表征,然后对筛选出的信号分量进行时域/频域的特征提取,构建不同故障状态下的特征样本集。为加快故障状态识别速度,排除不良样本的影响,提出一种基于二分K均值聚类的改进KNNC算法,精简了大容量的训练样本,有效去除不良特征样本和干扰点。实验结果表明,以敏感分量特征作为输入的改进KNNC算法能够快速准确地识别轴承不同故障状态。
To solve the problem of sensitive feature extraction from the non-stationary and nonlinear vibration signals of rolling bearing,local mean decomposition(LMD)was carried out.and the time/frequency domain features were extracted from the sensitive fault components quantified by the correlation coefficient method.Then,the feature sets of different faults states were established and used to train the state classifier.In order to achieve the higher accuracy of bearing fault states identification,an improved K-nearest neighbor classifier(KNNC)algorithm based on dichotomy K-means clustering was proposed,in which the big training samples were simplified,and the bad samples and interference points were effectively removed.Finally,the effectiveness of the method was verified through diagnostic analysis of experimental data of bearings.
作者
王化玲
刘志远
赵欣洋
晁战云
刘小峰
WANG Hualing;LIU Zhiyuan;ZHAO Xinyang;CHAO Zhanyun;LIU Xiaofeng(State Grid Intelligent Technology Co.,Ltd.,Jinan 250101,P.R.China;Overhaul Company,State Grid Ningxia Electric Power Co.,Ltd.,Yinchuan 750011,P.R.China;Huatong Technology Co.,Ltd.,Chongqing 400112,P.R.China;State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing 400044,P.R.China)
出处
《重庆大学学报》
EI
CAS
CSCD
北大核心
2020年第12期33-40,共8页
Journal of Chongqing University
基金
国家自然科学基金资助项目(51675064,51975067)。
关键词
局域均值分解
故障敏感分量
改进K近邻分类器
故障诊断
local mean decomposition
fault sensitive component
improved K-nearest neighbor classifier
fault diagnosis
作者简介
王化玲(1985-),女,高级工程师,主要从事自动控制与检测研究;通讯作者:刘小峰,女,重庆大学教授,主要从事虚拟仪器、工程信号处理、设备故障检测与诊断研究,(E-mail)liuxfeng0080@126.com。