期刊文献+

基于XRF和Vis-NIR光谱数据融合的土壤镉含量定量分析法 被引量:3

Quantitative Analysis of Soil Cadmium Content Based on Fusion of XRF Data and Vis-NIR Data
在线阅读 下载PDF
导出
摘要 根据鄱阳湖南矶山区域土壤的X荧光光谱和可见近红外光谱特征,建立了3种数据融合(等权融合、累加融合、外积融合)的最小二乘向量机定量分析模型。结果表明,等权融合和外积融合模型精度和稳定性均优于单一光谱定量分析模型。其中外积融合模型性能最佳,其决定系数(R2)为0.85,校正均方根误差(RMSEC)为0.09,预测均方根误差(RMSEP)为0.06,相对分析误差(RPD)为2.41,满足实际土壤中Cd的检测需求。该方法准确可靠,可为我国土壤重金属分类分级方法研究提供参考。 According to the characteristics of X-ray fluorescence spectrum and visible near infrared spectrum for soil in Nanji area of Poyang Lake,three quantitative analysis models for data fusion,including equal right fusion,co-addition fusion and outer product fusion based on least squares vector machine(LS-SVM)were established.Results showed that the models for equal right fusion and outer product fusion have better accuracy and stability than the single spectral quantitative analysis model has,in which the model for outer product fusion exhibits the best performance with a determination coefficient(R2)of 0.85,a root mean squared error(RMSEC)of 0.09,a root mean square error of prediction(RMSEP)of 0.06 and a relative percent deviation(RPD)of 2.41,satisfying the detection requirements.With the advantages of accuracy and reliability,the developed method could provide a reference for the study of soil heavy metal classification and grading method in China.
作者 王清亚 李福生 江晓宇 邬书良 谢涛锋 黄温钢 WANG Qing-ya;LI Fu-sheng;JIANG Xiao-yu;WU Shu-liang;XIE Tao-feng;HUANG Wen-gang(Engineering Research Center of Nuclear Technology Application,Ministry of Education,East China University of Technology,Nanchang 330013,China;State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,China)
出处 《分析测试学报》 CAS CSCD 北大核心 2020年第11期1327-1333,共7页 Journal of Instrumental Analysis
基金 核技术应用教育部工程研究中心开放基金(HJSJYB2018-5)。
关键词 X荧光光谱 可见近红外光谱 最小二乘支持向量机 镉含量 外积融合 土壤 X-ray fluorescence spectroscopy visible and near-infrared spectra least square support vector machine cadmium content outer product fusion soil
作者简介 通讯作者:李福生,博士,教授,研究方向:土壤重金属的光谱检测,E-mail:lifusheng@ecit.cn。
  • 相关文献

参考文献5

二级参考文献117

共引文献410

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部