摘要
借助修正的Riemann-Liouville分数阶导数,基于扩展的(G′/G)-展开法得到(3+1)维空时分数阶Yu-Toda-Sasa-Fukuyama方程的新精确解,其中包括双曲函数解、三角函数解和有理函数解,丰富了其精确解解系.
With the aid of the modified Riemann-Liouville fractional derivative,based on the extended(G′/G)-expansion method,the(3+1)-dimensional space-time fractional potential Yu-Toda-Sasa-Fukuyama equation was investigated,and it's explicit solutions were obtained,which include hyperbolic function,trigonometric function and rational function exact solutions.The results enriches the exact solution family of the equation.
作者
黄春
孙峪怀
HUANG Chun;SUN Yuhuai(Faculty of Education, Sichuan Vocational and Technical College, Suining 629000, China;School of Mathematics Science, Sichuan Normal University, Chengdu Sichuan 610066, China)
出处
《沈阳大学学报(自然科学版)》
CAS
2020年第6期530-534,共5页
Journal of Shenyang University:Natural Science
基金
国家自然科学基金资助项目(11871138)
四川省教育厅科研基金资助项目(18ZB0537).
关键词
分数阶方程
分数阶导数
分数阶复变换
(G′/G)-展开法
精确解
fractional equation
fractional derivative
fractional complex transformation
(G′/G)-expansion method
exact solution
作者简介
黄春(1986-),女,四川遂宁人,助教;通讯作者:孙峪怀(1963-),男,教授,博士.Email:sunyuhuai63@163.com.