期刊文献+

李2-代数综述

A Review of Lie 2-algebras
原文传递
导出
摘要 首先分别从范畴化和L-无穷代数两个不同角度回顾了李2-代数的两种等价定义.接着给出了从4种几何结构中产生的李2-代数.进一步,阐述了李2-代数的上同调理论并具体分析了低阶情况.最后讨论了严格李2-代数到严格李2-群的积分. We first recall two equivalent definitions of Lie 2-algebras,categorification of Lie algebras and 2-term L_∞-algebras.Then we present four different kinds of Lie 2-algebras from 2-plectic manifolds,Courant algebroids,homotopy Poisson manifolds and affine multivector fields on a Lie groupoid respectively.Moreover,we recall the cohomology theory of Lie 2-algebras and analyze its lower degree cases.The integration of strict Lie 2-algebras to strict Lie 2-groups is also discussed.
作者 郎红蕾 刘张炬 LANG Honglei;LIU Zhangju(Department of Applied Mathematics,China Agricultural University,Beijing,100083,P.R.China;School of Mathematical Sciences,Peking University,Beijing,100871,P.R.China)
出处 《数学进展》 CSCD 北大核心 2020年第6期641-674,共34页 Advances in Mathematics(China)
基金 Supported by NSFC(Nos.11901568,12071241)。
关键词 李2-代数 范畴化 上同调 李2-群 Lie 2-algebras categorification cohomology Lie 2-groups
作者简介 LANG Honglei,E-mail:hllang@cau.edu.cn;Corresponding author:LIU Zhangju,liuzj@pku.edu.cn。
  • 相关文献

参考文献1

二级参考文献17

  • 1Alekseevsky D, Michor P W, Ruppert W. Extensions of Lie algebras, arXiv:math.DG/0005042.
  • 2Alekseevsky D, Michor P W, Ruppert W. Extensions of super Lie algebras. J Lie Theory, 2005, 15:125-134.
  • 3Baez J C, Crans A S. Higher-dimensional algebra, VI. Lie 2-algebras. Theory Appl Categ, 2004, 12:492 538.
  • 4Brahic O. Extensions of Lie brackets. J Geom Phys, 2010, 60:352-374.
  • 5Dehling M. Shifted Lo-bialgebras. Master Thesis, GSttingen University, 2011.
  • 6Eilenberg S, Maclane S. Cohomology theory in abstract groups, II. Group extensions with non-abelian kernel. Ann Math, 1947, 48:326-341.
  • 7Hochschild G. Cohomology classes of finite type and finite dimensional kernels for Lie algebras. Amer J Math, 1954, 76:763-778.
  • 8Inassaridze N, Khmaladze E, Ladra M. Non-abelian cohomology and extensions of Lie algebras. J Lie Theory, 2008, 18:413-432.
  • 9Lada T, Stasheff J. Introduction to sh Lie algebras for physicists. Int J Theo Phys, 1993, 32:1087-1103.
  • 10Lada T, Markl M. Strongly homotopy Lie algebras. Comm Alg, 1995, 23:2147 2161.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部