期刊文献+

一种稀疏度自适应OFDM系统信道估计算法 被引量:5

Sparsity Adaptive Algorithm for OFDM System Channel Estimation
在线阅读 下载PDF
导出
摘要 针对OFDM系统中利用分段弱正交匹配追踪(SWOMP)算法进行信道估计性能不佳的问题,提出了一种基于Dice原子匹配准则的稀疏度自适应弱匹配追踪(D_SASWOMP)算法。该算法使用Dice原子匹配准则替代传统压缩感知重构算法的内积准则,同时引入变步长迭代思想以快速而准确地逼近信道稀疏度,在此基础上,算法融合了回溯思想,从而进一步保证迭代过程中支撑集原子的准确性。仿真结果表明,该算法可有效应用于OFDM系统的信道估计,并且其性能明显优于SWOMP算法。 Aiming at the problem of poor channel estimation performance using the segmented weak orthogonal matching tracking(SWOMP) algorithm in OFDM systems, a sparse adaptive weak matching tracking(D_SASWOMP) algorithm based on the Dice atomic matching criterion is proposed. The algorithm uses the Dice atomic matching criterion to replace the inner product criterion of the traditional compressed sensing reconstruction algorithm, and at the same time introduces the variable-step iteration idea to quickly and accurately approximate the channel sparsity. On this basis, the algorithm incorporates backtracking ideas to further ensure the accuracy of the support set atoms during the iteration process. Simulation results show that the algorithm can be effectively applied to the channel estimation of OFDM system, and its performance is significantly better than SWOMP algorithm.
作者 贺新民 陈善恒 席纪江 杜钟祥 陈雪利 He Xinmin;Chen Shanheng;Xi Jijiang;Du Zhongxiang;Chen Xueli(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou,Jiangsu 2210000;Xuzhou First People's Hospital,Xuzhou,Jiangsu 221005)
出处 《信息通信》 2020年第8期1-5,共5页 Information & Communications
基金 徐州市重点研发计划“基于LBS的智慧医院重点病人监护关键技术应用研究及示范”(KC18171)。
关键词 压缩感知 信道估计 OFDM系统 稀疏度自适应 信号重构 Compressed sensing Channel estimation OFDM system Sparsity adaptive Signal reconstruction
作者简介 贺新民(1962-),男,山东省潍坊人,中国矿业大学信电学院信息工程系任教师,主要研究方向为模拟电子技术、数字电子技术、微型计算机、消费电子技术、计算机通信和计算机控制、智能仪器等。通信作者:陈雪利(1995-),女,硕士研究生,中国矿业大学信息与控制学院,主要研究方向为基于OFDM信道估计。E-mail:18895605028@163.com。
  • 相关文献

参考文献4

二级参考文献50

  • 1TONG Lang,SADLER B M,DONG Min.Pilot-assisted wireless transmissions[J].IEEE Signal Processing Magzine,2004,2(6):12-25.
  • 2VAN DE BEEK J J,EDFORS O.On channel estimation in OFDM systems[C]//Proc of IEEE VTC 1995.Piscataway:IEEE,1995,2:815-819.
  • 3WU C J,LIN D W.Sparse channel estimation for OFDM transmission based on representative subspace fitting[C]//Proc of IEEE 61st Veh Technol Conf.Piscataway:IEEE,2005,1:495-499.
  • 4PAREDES J L,ARCE G R,WANG Zhongmin.Ultra-Wideband compressed sensing:channel estimation[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(3):383-395.
  • 5TAUBOCK G,HLAWATSCH F.A compressed sensing technique for ofdm channel estimation in mobile environments:exploiting channel sparsity for reducing pilots[C]//Proceedings of ICASSP'2008.Piscataway:IEEE,2008:2885-2888.
  • 6DONOHO D L.Compreesed sensing[J].IEEE Trans on Inf Theory,2006,52(4):1289-1306.
  • 7BARANIUK R G.Compressive sensing[J].IEEE signal Processing Magazine,2007,24(4):118-120,124.
  • 8MALLAT S,ZHANG Z.Mathcing pursuit with time-frequency dictionaries[J].IEEE Tram on Signal Processing,1993,41(12):3393-3415.
  • 9TROPP J A,GILBERTA C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans on lnformation Theory,2007,53(12):4655-4666.
  • 10COFFER S F,RAO B D.Sparse channel estimation via matching pursuit with application to equalization[J].IEEE Trans on Communications.2002,50(3):374-377.

共引文献67

同被引文献39

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部