期刊文献+

深度学习目标检测算法在货运列车车钩识别中的应用 被引量:10

Application of deep learning target detection algorithm in freight train coupler recognition
在线阅读 下载PDF
导出
摘要 铁路货运列车的自动摘钩是实现驼峰作业自动化的重要环节,为了完成货运列车自动摘钩工作,需要实现车钩的快速准确识别。通过当前广泛应用的YOLO_v2网络模型,研究针对货运列车在正常工作条件下车钩的识别问题,通过K-means聚类算法对YOLO_v2网络模型中anchor的个数进行调整优化,找出适用于本次车钩识别的最优anchor个数以及宽高维度,并通过训练自制具有明显目标特征数据集来获取更加准确的权重。结果表明改进YOLO_v2模型在精确度上达到92.6%;在召回率上达到了91.8%;在FPS上达到45帧/s,改进的YOLO_v2模型达到了预期设计目标。 Aiming at the complex problem that the EMU(Electric Multiple Units) trains operation need to consider punctuality, energy saving, safety and comfort, the operation time was regarded as the standard of passenger satisfaction, and the energy consumption was seen as the standard of the railway company satisfaction. Meanwhile, considering the influence of electrical phases in order to make the train operation more in line with the actual situation, a multi-objective optimization model for the train operation was established, which was constrained by safety, track characteristics and passenger comfort and so on. Then, a kind of algorithm combining NSGA-Ⅱ(Non-dominated Sorting Genetic Algorithm-Ⅱ) with golden ratio technology was proposed to solve the problem of uneven individuals distribution in the solution space when using NSGA-Ⅱ to optimize. The tests of the algorithms show that the golden ratio NSGA-Ⅱ algorithm has better distribution and convergence than the NSGA-Ⅱ algorithm. Finally, taking CRH3 of a certain section of Wuhan-Guangzhou line as a simulation case, some simulation results are shown, which further indicate that the model and the proposed algorithm are feasible.
作者 郭忠峰 张渊博 王赫莹 任仲伟 GUO Zhongfeng;ZHANG Yuanbo;WANG Heying;REN Zhongwei(Key Laboratory of Intelligent Manufacturing and Industrial Robot of Liaoning Province,Shenyang University of Technology,Shenyang 110870,China;Guizhou Institute of Technology,Guiyang 550009,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2020年第10期2479-2484,共6页 Journal of Railway Science and Engineering
基金 辽宁省教育厅资助项目(LQGD2017034)。
关键词 改进YOLO_v2模型 货运列车 车钩识别 K-MEANS聚类算法 improved YOLO_v2 model freight train coupler recognition K-means clustering algorithm
作者简介 通信作者:郭忠峰(1978-),男,辽宁沈阳人,副教授,博士,从事机器人技术研究,E-mail:13146221@qq.com。
  • 相关文献

参考文献6

二级参考文献35

  • 1袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:155
  • 2Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 3Murray N, Vanrell M, Otazu X, et al. Saliency estimation using a non-parametric low-level vision model [J]. 2011 IEEE Conference on Computer Vision and Pattern Recognition (Cvpr), 2011: 433-40.
  • 4Libao Zhang, Kaina Yang. Region-of-interest extraction based on frequency domain analysis and salient region detection for remote sensing image[J].IEEE Letters on Geoscience and Remote Sensing, 2014, 11(5):916-920.
  • 5J Harel, C Koch, P Perona. Graph-based visual saliency[C]. Proceedings of the Advances in Neural Information Processing Systems, F, 2006: 545-552.
  • 6Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection[C]. Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 1597-1604.
  • 7王小东,谢金虎,崔炳谋,刘勇.驼峰解体作业中自动提钩机制的研究[J].铁路计算机应用,2008,17(4):5-8. 被引量:3
  • 8李庆龄,赵永生.六自由度工业机器人动力学分析与仿真[J].上海电机学院学报,2008,11(4):275-278. 被引量:23
  • 9苏锦旗,薛惠锋,詹海亮.基于划分的K-均值初始聚类中心优化算法[J].微电子学与计算机,2009,26(1):8-11. 被引量:34
  • 10汪中,刘贵全,陈恩红.一种优化初始中心点的K-means算法[J].模式识别与人工智能,2009,22(2):299-304. 被引量:140

共引文献174

同被引文献64

引证文献10

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部