期刊文献+

一种用于机床角度头故障诊断的双重降噪方法 被引量:2

A dual noise reduction method for angle head fault diagnosis
在线阅读 下载PDF
导出
摘要 角度头是数控机床必不可少的加工附件,由于长期处于恶劣的加工工况下,极易受到损坏。采集角度头的振动信号时,环境中大量的随机噪声会湮没故障特征信息,从而造成角度头故障特征提取困难。针对此问题,提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)及自相关的双重降噪方法。该方法采用自相关滤波方法对振动信号进行降噪预处理,再对降噪后的信号进行EEMD分解,随后采用遗传算法对EEMD输入参数优化,依据相关峭度系数准则筛选分解得到的固有模态函数(intrinsic mode function,IMF)分量进行信号重构。最后,对重构信号进行时频分析,提取角度头故障特征。对仿真和实测信号分析的结果表明,本文方法能够有效抑制噪声干扰,可准确提取到角度头的故障特征信息,为机床角度头的故障诊断提供依据。 The angle head is an essential processing accessory for computer numerical control(CNC)machine tools.It is extremely vulnerable to damage under long-term harsh processing conditions.The strong random noise in the environment will annihilate the fault feature information of the angle head,which makes it difficult to extract data about fault features.To solve this problem,a dual noise reduction method based on ensemble empirical mode decomposition(EEMD)and autocorrelation is proposed.An autocorrelation filtering approach is used to preprocess the vibration signals data,and then the obtained signals are decomposed using EEMD.A genetic algorithm is then applied to optimize the input parameters of EEMD,and the intrinsic mode function(IMF)component obtained from the EEMD decomposition is selected to reconstruct the signal on the basis of a combination of kurtosis and correlation coefficients.The data for the angle head fault features can then be extracted from the reconstructed signals through time-frequency analysis.The predictions obtained using our method show good agreement with the measured data for the angle head.The results show that the proposed method can effectively suppress random noise and can accurately extract fault feature information for the angle head.
作者 高树成 姚剑飞 陈建 张素燕 张泽 何万林 GAO ShuCheng;YAO JianFei;CHEN Jian;ZHANG SuYan;ZHANG Ze;HE WanLin(Beijing Key Laboratory for Health Monitoring Control and Fault Self-recovery for High-end Machinery,Beijing University of Chemical Technology,Beijing 100029;School of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029;Key Laboratory of Engine Health Monitoring and Networking,Ministry of Education,Beijing University of Chemical Technology,Beijing 100029;Capital Aerospace Machinery Co.,Ltd.,Beijing 100076,China)
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期97-103,共7页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词 角度头 总体平均经验模态分解(EEMD) 自相关 遗传算法 故障诊断 angle head ensemble empirical mode decomposition(EEMD) autocorrelation genetic algorithm fault diagnosis
作者简介 第一作者:高树成,男,1994年生,硕士生;通信联系人:姚剑飞,E-mail:yaojf@mail.buct.edu.cn。
  • 相关文献

参考文献4

二级参考文献34

  • 1李肖博,肖仕武,刘万顺,郑涛.基于形态滤波的变压器电流相关保护方案[J].中国电机工程学报,2006,26(6):8-13. 被引量:23
  • 2段礼祥,张来斌,王朝晖.柴油机状态监测与故障诊断特征参数研究[J].车用发动机,2007(1):76-79. 被引量:14
  • 3苑宇,马孝江.基于主分量分析的柴油机振动信号特征提取[J].中国机械工程,2007,18(8):971-975. 被引量:9
  • 4Zhou F,Yan B,Demodulated resonance technique in faultdiagnosis of high speed line rolling-mill synchromesh gears[C].//Imaging Systems and Techniques(IST),IEEE International Conference on,IEEE,2012:344-349.
  • 5Raj S,Murali N.Early classification of bearing faults usingmorphological operators and fuzzy inference[J].IEEE Transactions on Industrial Electronics,2013,60(2):567-574.
  • 6Dong Y,Liao M,Zhang X,et ai.Faults diagnosis of rollingelement bearings based on modified morphological method[J].Mechanical Systems and Signal Processing,2011,25(4):1276-1286.
  • 7Wu Z H,Huang N E.Ensemble empirical modedecomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):I-41.
  • 8Harris M C,Blotter J D,Scott D.Sommerfeldt obtaining thecomplex pressure field at the hologram surface for use innear-field acoustical holography when pressure and in-planevelocities are measured[J].The Journal of the Acoustical Society of America,2006,119(2):808-816.
  • 9Zhang L,Xu J,Yang J,et al.Multiscale morphology analysis and its application to fault diagnosis[J].Mechanical Systems and Signal Prpcessing,2008,22(3):597-610.
  • 10Nikolaou N G,Antoniadis I A.Application of morphologicaloperators as envelope extractors for impulsive-type periodicsignals[J].Mechanical Systems and Signal Processing,2003,17(6):1147-1162.

共引文献125

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部