期刊文献+

非瞬时脉冲分数阶微分方程边值问题解的存在性与唯一性 被引量:1

Existence and uniqueness of solutions for boundary value problems of fractional differential equations with non-instantaneous impulses
在线阅读 下载PDF
导出
摘要 非瞬时脉冲所描述的突变会持续停留在一个有限的时间间隔内,这种现象在临床医学、生物工程、化学和物理等领域都普遍存在。为了能够更深刻、更精确地反映事物的变化规律,研究了一类具有非瞬时脉冲的分数阶微分方程边值问题解的存在性与唯一性。首先,通过建立与边值问题等价的积分方程,定义了算子,并证明了其全连续性;然后,运用Schauder不动点定理得到了边值问题解存在的充分条件;最后利用压缩映射原理得到解的唯一性定理。 The mutation described by non-instantaneous pulses will stay in a limited time interval.This phenomenon is common in clinical medicine,bioengineering,chemistry,physics and other fields.In order to reflect the change law of things more profoundly and accurately,the existence and uniqueness of solutions for a class of boundary value problems of fractional differential equations with noninstantaneous impulses were studied.The operator was defined by establishing an integral equation equivalent to the boundary value problem,and its complete continuity was proved.By using Schauder fixed point theorem,the sufficient conditions for the existence of solutions of the boundary value problems were obtained.The uniqueness theorem of solutions was obtained by using the contraction mapping principle.
作者 郑雯静 贾梅 李庭乐 ZHENG Wenjing;JIA Mei;LI Tingle(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 CAS CSCD 北大核心 2020年第5期430-435,共6页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11171220)。
关键词 非瞬时脉冲 CAPUTO分数阶导数 SCHAUDER不动点定理 压缩映射原理 non-instantaneous impulses Caputo derivative Schauder fixed point theorem contraction mapping principle
作者简介 第一作者:郑雯静(1994−),女,硕士研究生.研究方向:常微分方程理论及其应用.E-mail:jokerzheng0201@163.com;通信作者:贾梅(1963−),女,副教授.研究方向:常微分方程理论及其应用.E-mail:jiamei-usst@163.com。
  • 相关文献

参考文献5

二级参考文献27

  • 1ZHANG Shuqin.Monotone method for initial value problem for fractional diffusion equation[J].Science China Mathematics,2006,49(9):1223-1230. 被引量:7
  • 2LIU Xiping,JIA Mci. Multiple Solutions for Fractional Differential Equations with Nonlinear Boundary Conditions [J]. Comput Math Appl,2010,59(8): 2880-2886.
  • 3JIA Mci,LIU Xiping. Three Nonncgativc Solutions for Fractional Differential Equations with Integral Boundary Conditions [J]. Comput Math Appl,2011,62(3): 1405-14 12.
  • 4FENG Mciqiang,ZHANG Xucmci,GE" Wcigao. New Existence Results for High-Ordcr Nonlinear Fractional Differential Equation with Integral Boundary Conditions [J/OL]. Bound Value Probl,2011,doi: 10. 1 155/201 1/ 720702.
  • 5BA I Chuanzhi. Existence Rcsuit for Boundary Value Problem of Nonlinear Impulsive Fractional Differential Equation at Resonance [J]. J Appl Math Comput,2012,39( 1/2): 42 1-443.
  • 6CHEN Fulai. Coincidence Degree and Fractional Boundary Value Problems with Impulses [J]. Comput Math Appl,2012,6,1( 10): 3444-3455.
  • 7Ahmad B,WANG Guo-tao.A Study of an Impulsive Four-Point Nonlocal Boundary Value Problem of Nonlinear Fractional Differential Equations [J]. Comput Math Appl,2011,62(3): 134 1-134 9.
  • 8TIAN Yuanshcng,BAI Zhanbing. Existence Results for the Thrcc-Point Impulsive Boundary Value Problem Involving Fractional Differential Equations [J]. Comput Math Appl,2010,59(8): 2601-2609.
  • 9GUO Tianliang,JIANG Wei. Impulsive Problems for Fractional Differential Equations with Boundary Value Conditions [J]. Comput Math Appl,2012,6,1(10): 3281-3291.
  • 10WANG Jinrong,ZHOU Yong,FcC:kan M. On Rcccnt Developments in the Theory of Boundary Value Problems for Impulsive Fractional Differential Equations [J]. Comput Math Appl,2012,6,1(10): 3008-3020.

共引文献19

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部