摘要
对于均匀带电半球体,电荷分布不具有高度对称性,不宜利用定义法计算其轴线上的电势.采用微元法计算了其轴线上各个区域电势的表达式,并利用Matlab数值模拟计算,作出了电势随轴线坐标变化的曲线图,对微元法计算均匀带电半球体轴线上的电势中的电荷元的几种不同选取作对比分析,阐明了恰当选取微元,是应用微元法计算电势的关键,微元的选取是灵活多样的,根据电荷分布有体积元、面积元和线段元,应根据具体问题选取特定形状的微元.
For the uniformly charged hemispheroid,the charge distribution is not high symmetry,so it is not suitable to use the definition method to calculate the electric potential on the axis.In this paper,the expression of the electric potential of each area on the axis is calculated by the infinitesimal element method,and the curve of the electric potential changing with the axis coordinate is made by the Matlab numerical simulation.Several different choices of the charge elements in the calculation of the electric potential on the axis of the uniformly charged hemispheriod by the infinitesimal element method are compared and analyzed.It is pointed out that the proper selection of the infinitesimal element is the key to the calculation of the electric potential by the infinitesimal element method,the selection is flexible and diverse,according to the charge distribution,there are volume element,area element and line element,We should select the infinitesimal element with specific shape according to the specific problems.
作者
吴显云
张容
WU Xianyun;ZHANG Rong(School of Physics and Engineering Technology,Chengdu Normal University,Chengdu 611130,China)
出处
《四川职业技术学院学报》
2020年第5期163-168,共6页
Journal of Sichuan Vocational and Technical College
基金
成都师范学院教改项目“地方师范院校师范生大学物理课程教学改革的研究与实践”(2016JG14)。
关键词
均匀带电半球体
电势
微元
uniformly charged hemispheroid
electric potential
infinitesimal elements
作者简介
吴显云(1975—),男,四川宣汉人,硕士,讲师,研究方向为物理教育教学;张容(1975—),男,四川西充人,副教授,研究方向为物理教育教学。