期刊文献+

Ti-15Mo合金的再结晶行为及动力学 被引量:8

Recrystallization behavior and kinetics of Ti-15Mo alloy
在线阅读 下载PDF
导出
摘要 研究了Ti-15Mo合金在不同退火处理条件下的再结晶行为,构建合金的再结晶动力学模型,计算其再结晶激活能。结果表明:随着退火温度的增加,合金的再结晶形核孕育期时间缩短,再结晶速度提高;随着退火时间的延长,再结晶晶粒长大速度在开始阶段较快,随后随着动力学条件的减弱,长大速度有所下降。采用阿弗拉密(Avrami)方程描述了不同温度下Ti-15Mo的再结晶动力学模型,应用Arrhenius方程,推算出Ti-15Mo的再结晶激活能为145.68 kJ/mol。 The recrystallization behavior of Ti-15 Mo alloy under different annealing conditions was studied, and the recrystallization kinetic model of the alloy was constructed, and its recrystallization activation energy was calculated. The results show that with the increase of annealing temperature, the recrystallization nucleation time of the alloy is shortened and the recrystallization speed is increased. With the increase of annealing time, the growth rate of recrystallized grains is faster in the initial stage, and then decreases slightly due to the weaken of kinetic conditions. The model of recrystallization kinetics of the Ti-15 Mo alloy at different temperature is described by Avrami equation, and the recrystallization activation energy of the Ti-15 Mo alloy is calculated as 145.68 kJ/mol by using the Arrhenius equation.
作者 向柳 辛社伟 毛小南 杜宇 周伟 李倩 蔡建华 XIANG Liu;XIN She-wei;MAO Xiao-nan;DU Yu;ZHOU Wei;LI Qian;CAI Jian-hua(School of Materials Science and Engineering,Northeastern University,Shenyang 110819,China;Northwestern Institute for Nonferrous Metal Research,Xi’an 710016,China)
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2020年第10期137-142,共6页 Transactions of Materials and Heat Treatment
基金 装备预研重点实验室基金(6142902190501)。
关键词 Ti-15Mo合金 等温退火 再结晶 动力学 激活能 Ti-15Mo alloy isothermal annealing recrystallization kinetics activation energy
作者简介 向柳(1998-),男,硕士研究生,主要研究方向为钛合金,E-mail:910938210@qq.com;通信作者:辛社伟(1978-),男,教授,主要研究方向为钛合金及其加工,E-mail:nwpu_xsw@126.com。
  • 相关文献

参考文献8

二级参考文献53

  • 1吾志岗,李德富,郭胜利,邹宏辉,胡捷,彭海健.变形条件对GH625合金高温变形动态再结晶的影响[J].稀有金属,2010,34(6):833-838. 被引量:11
  • 2吕成,张立文,王照坤,郑渠英,王丹.GH4169合金热加工中微观组织模拟研究进展[J].热加工工艺,2006,35(18):57-60. 被引量:10
  • 3CHINO Y, MABUCHI M. Plastic-forming processes for magnesium alloy [J]. Japan lnst of Light Metals, 2001, 51(5): 498-502.
  • 4X1NG J, YANG X, MIUNA H, SAKAI T. Supereplasticity of magnesium alloy AZ31 processed by severe plastic deformation [J]. Mater Trans, 2007, 48(6): 1406-1411.
  • 5WATANABE H, FUKUSUMI M. Mechanical properties and texture of a superplastically deformed AZ31 magnesium alloy [J]. Mater Sci EngA, 2008, 477(3):153-161.
  • 6ION S E, HUMPHREYS F J, WHITE S H. Dynamic recrystallization and the development of microstructure during high temperature deformation of magnesium [J]. Acta Metall, 1982, 30(10): 1909- 1919.
  • 7KAIBYSHEV R, SITDIKOV O. On bulging mechanism of dynamic recrystallization [C]// MCNELLEY T D. Recrystallization and Related Phenomena (REX'96). Monterey: MIAS, 1997:287 294.
  • 8GALIYEV A, KAIBYSHEV R, GOTTSTEIN G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta Mater, 2001, 49(4): 1199-1207.
  • 9SITDIKOV O, KAIBYSHEV K, SAKAI T. Dynamic recrystallization based on twinning in coarse-grained magenisium [J]. Materials Science Forum, 2003, 419/422(1): 521-526.
  • 10HIGASHIDA K, TAKAMURA J, NARITA N. The formation of deformation bands in fcc crystals [J]. Mater Sci Eng, 1986, 81(8): 239-258.

共引文献68

同被引文献58

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部