期刊文献+

实现给定能量比离散光斑阵列的自由曲面分束器 被引量:2

Freeform Surface Beam Splitter for Discrete Spot Array with Prescribed Energy Proportion
原文传递
导出
摘要 采用自由曲面透镜作为分束器以生成具有任意能量比的离散光斑阵列。根据能量守恒定律,将入射光束划分为一系列与光斑阵列对应的子区域。对于每个子区域,采用分离变量法计算子区域与相应光斑之间的光线映射关系,并采用最小二乘法构造遵循该映射关系的自由曲面。提供两个设计实例以检验自由曲面分束器的可行性:第一个设计可生成具有相同能量比例的高斯光斑阵列,第二个设计可产生具有预设不均匀能量比例的矩形平顶光斑阵列。仿真结果表明,考虑菲涅耳损耗后,两个设计实例的光输出比均高于89%。 Freeform lenses are used as freeform surface beam splitters to generate discrete spot arrays with arbitrary energy proportions.According to the law of conservation of energy,the incident beam is divided into a series of subregions corresponding to the spot array.For each subarea,variable separation is used to acquire the ray map between the input beam within the subarea and the corresponding spot.Further,a least squares method is used to construct the freeform surface following the ray map.Two design examples are provided to demonstrate the capabilities of freeform beam splitters:one could generate a Gaussian spot array with an equal energy proportion and the other could generate a square top-hat spot array with a predefined non-uniform energy proportion.Both freeform beam splitters exhibit light output ratios of over 89%considering Fresnel losses.
作者 司佳 冯泽心 程德文 王涌天 Si Jia;Feng Zexin;Cheng Dewen;Wang Yongtian(Beijing Engineering Research Center of Mixed Reality and Advanced Display,School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2020年第17期176-184,共9页 Acta Optica Sinica
基金 国家重点研发计划(2017YFA0701200) 国家自然科学基金青年科学基金(11704030) 北京理工大学青年教师学术启动计划。
关键词 光学设计 分束器 自由曲面光学 非成像光学 optical design beam splitter freeform surface optics non-imaging optics
作者简介 冯泽心,E-mail:fzx84@126.com。
  • 相关文献

参考文献2

二级参考文献22

  • 1Yuri V Miklyaev, Waleri Imgrunt, Vladimir S Pavelyev, et al. Novel continuously shaped diffractive optical elements enable high efficiency beam shaping[C]. SPIE, 2010, 7640: 764024.
  • 2Y V Miklyaev, A Krasnaberski, M Ivanenko, et al. Efficient diffractive optical elements from glass with continuous surface profiles[C]. SPIE, 2011, 7913: 79130B.
  • 3H Pang, S Yin, G Zheng, et al. Design method of diffractive optical element with large diffraction angle[C]. SPIE, 2014, 927l: 9271 11M.
  • 4NPK Cotter, T W Preist, J R Sambles. Scattering-matrix approach to muhilayer diffraction[J]. J Opt Soc Am, 1995, 12(5): 1097-1103.
  • 5M G Moharam, T K Gaylord. Diffraction analysis of dielectric surface-relief gratings[J]. J Opt Soc Am A, 1982, 72(10): 1385-1392.
  • 6Jiang P L, Chu H, Hench J, et al. Forward solve algorithms for optical critical dimension metrology[C]. SPIE, 2008, 6922: 692210.
  • 7Louis A Romero, Fred M Dickey. Theory of optimal beam splitting by phase gratings. I. One-dimensional gratings[J]. J Opt Soc Am A, 2007, 24(8): 2280-2295.
  • 8Z Li, Zheng G, He P A, et al. All silicon nanorod-based Dammann gratings[J]. Opt Lett, 2015, 40(18): 4285-4288.
  • 9古德曼.傅里叶光学导论[M].秦克诚,刘培森,陈家璧,等译.(第三版).北京:电子工业出版社,2006:60—61.
  • 10M G Moharam, T K Gaylord, E B Grann, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. J Opt Soc Am A, 1995, 12(5): 1068-1076.

共引文献17

同被引文献20

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部