期刊文献+

基于降维的极化敏感阵列幅相误差自校正算法 被引量:8

Reduced-dimension Self-correction Algorithm for Amplitude-phase Error in Polarization-sensitive Array
在线阅读 下载PDF
导出
摘要 传统的极化域MUSIC算法当存在幅相误差扰动时会引起算法性能下降,并且在估计波达方向(DOA)和极化参数时需要四维谱峰搜索,计算量巨大。针对此问题,文中提出一种适用于任意极化敏感阵型的DOA-极化-误差的降维迭代自校正算法。首先将传统自校正算法推广至极化域,把DOA-极化和误差分离开,每次迭代分为估计误差参数和估计DOA-极化联合参数;然后在每次迭代过程中采用基于矩阵秩亏损的降维MUSIC算法来联合估计DOA和极化参数,将四维搜索优化成只与方位角和俯仰角有关的二维搜索,并利用搜索结果直接计算出极化参数;最后固定DOA-极化参数,问题转化为二次型极值问题,完成对幅相误差的估计,经过多次迭代算法可收敛。仿真实验验证了算法的有效性,仿真结果表明本文算法具有良好的误差校正效果。 The traditional polarization domain MUSIC algorithm will cause the performance degradation of the algorithm in the presence of gain-phase error,and it requires a four-dimensional spectral search when estimating DOA and polarization parameters,which is a huge amount of computation.Aiming at this problem,this paper proposes a DOA-polarization-error reduced-dimension iterative self-correction algorithm for arbitrary polarization-sensitive formations.First,the traditional self-correction algorithm is extended to the polarization domain,and DOA-polarization and error are separated.Each iteration is divided into estimated error parameters and estimated DOA-polarization joint parameters;Then,a reduced-dimension MUSIC algorithm based on matrix rank loss is used to jointly estimate the DOA and polarization parameters in each iteration,the four-dimensional search is optimized into a two-dimensional search only related to the azimuth and elevation angle,and directly calculate the polarization parameters using the search results;Finally,when the DOA-polarization parameters are fixed,the problem is transformed into a quadratic extremum problem,and the estimation of the gain-phase errors is completed.The algorithm can converge after multiple iterations.Simulation experiments verify the effectiveness of the algorithm.Simulation results show that the algorithm in this paper has a good error correction effect.
作者 林潇 薛敬宏 乔晓林 LIN Xiao;XUE Jinghong;QIAO Xiaolin(Institute of Information Engineering,Harbin Institute of Technology,Weihai 264209,China)
出处 《现代雷达》 CSCD 北大核心 2020年第10期51-56,共6页 Modern Radar
基金 山东省重点研发计划(军民科技融合)资助项目。
关键词 波达方向估计 极化敏感阵列 误差校正 降维算法 参数估计 DOA estimation polarization-sensitive array error correction reduced-dimension algorithm parameter estimation
作者简介 通信作者:林潇,男,1995年生,硕士,研究方向为雷达信号处理、陈列信号处理,Email:17862912191@163.com;薛敬宏,男,1974年生,博士,副教授,研究方向为导引头技术、极化敏感阵列信号处理、压缩感知理论及应用;乔晓林,男,1948年生,博士,教授,研究方向为现代信号处理技术、极化信号处理技术、雷达技术'。
  • 相关文献

参考文献4

二级参考文献43

  • 1徐友根,刘志文.基于累积量的极化敏感阵列信号DOA和极化参数的同时估计[J].电子学报,2004,32(12):1962-1966. 被引量:12
  • 2董晓辉,柯亨玉,董志飞.阵列误差对四阶MUSIC算法到达角估计的影响[J].现代雷达,2005,27(1):41-43. 被引量:5
  • 3王兰美,王洪洋,廖桂生.提高信号到达角估计精度的新方法[J].电波科学学报,2005,20(1):91-94. 被引量:11
  • 4曾勇虎,王雪松,肖顺平,庄钊文.基于时频联合域极化滤波的高分辨极化雷达信号检测[J].电子学报,2005,33(3):524-526. 被引量:12
  • 5HATKE G F. Performance analysis of the Super- CART antenna array[R]. MIT Lincoln Lab. , Cambridge, MA, Proj. Rep. AST-22, Mar. 1992.
  • 6NEHORAI A and PALDI E. Vector-sensor array processing for electromagnetic source localization [J]. IEEE Trans. on Signal Processing, 1994, 42(2): 376- 398.
  • 7LI J and COMPTON R J. Angle and polarization estimation using ESPRIT with a polarization sensitive array[J]. IEEE Trans. on Antennas Propagat. , 1991, 39(9) : 1376-1383.
  • 8WONG K T,ZOLTOWSKI M D. Closed-Form Direction-Finding and Polarization Estimation with Arbitrarily Spaced Electromagnetic Vector-Sensors at Unknown Locations [J]. IEEE Trans. on Antennas Propagat. , 2000, 48(5): 671-681.
  • 9ZOLTOWSKI M D and WONG K T. ESPRIT-based 2-D direction-finding with a sparse uniform array of electro-magnetic vector sensors[J]. IEEE Trans. on Signal Processing, 2000, 48(8): 2195-2204.
  • 10WONG K T and LI L. Root-MUSIC-based directionfinding and polarization estimation using diversely polarized possibly collocated antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2004, 3 (1) : 129-132.

共引文献30

同被引文献71

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部