期刊文献+

基于S-RVoG模型的PolInSAR森林高度非线性复数最小二乘反演算法 被引量:5

A S-RVoG model-based PolInSAR nonlinear complex least squares method for forest height inversion
在线阅读 下载PDF
导出
摘要 针对经典的PolInSAR森林高度三阶段几何反演算法在单基线条件容易受到地体幅度比假设以及地形坡度影响的问题,从测量平差角度提出了基于S-RVoG模型的PolInSAR非线性复数最小二乘森林高度反演算法。该算法不再需要假设某一个极化通道地体幅度比为零,且采用考虑地形坡度影响的S-RVoG模型作为平差模型。为了验证算法,本文采用欧空局BioSAR2008项目提供的3景P波段极化干涉SAR数据进行两组单基线森林高度反演试验。结果表明,在单基线条件下,基于RVoG模型的非线性复数最小二乘算法反演结果优于三阶段几何反演算法,而基于S-RVoG模型的非线性复数最小二乘算法进一步提高反演精度,对于坡度较大区域(坡度>10°),精度平均提高了18.48%。 The classical three-stage forest height geomatical inversion method is easily affected by the assumption of the amplitude ratio of ground-to-volume scattering(GVR)and terrain slope.To address these problems,from the perspective of survey adjustment,the S-RVoG(slope-random volume over ground)based nonlinear complex least squares forest height inversion method is proposed in this paper.On the one hand,it does not need to hold the GVR assumption.On the other hand,it can take into account the terrain slope effect by adopting the S-RVoG model as the adjustment model.Three scenes of P-band PolInSAR data acquired from ESA BioSAR2008 campaign are used to construct two groups of single baseline tests for forest height inversion.The results show the RVoG-based nonlinear complex least squares method can obtain better forest height results than the three-stage geometrical method in a single baseline configuration.The proposed S-RVoG based nonlinear complex least squares method can further improve the accuracy.The improvement reaches a stand-level mean of 18.48%for slopes greater than 10°.
作者 解清华 朱建军 汪长城 付海强 张兵 XIE Qinghua;ZHU Jianjun;WANG Changcheng;FU Haiqiang;ZHANG Bing(School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China;School of Geosciences and Info-Physics, Central South University, Changsha 410083, China)
出处 《测绘学报》 EI CSCD 北大核心 2020年第10期1303-1310,共8页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41804004,41820104005,41531068,41904004) 中国地质大学(武汉)中央高校基本科研业务费专项(CUG190633)。
关键词 极化干涉SAR 森林高度 地形坡度 S-RVoG模型 复数最小二乘 polarimetric SAR interferometry(PolInSAR) forest height terrain slope sloped random volume over ground(S-RVoG)model complex least squares
作者简介 第一作者:解清华(1989—),男,博士,副教授,研究方向为PolSAR/PolInSAR植被生物物理参数反演及林下地形测绘。E-mail:xieqh@cug.edu.cn;通讯作者:朱建军,E-mail:zjj@csu.edu.cn。
  • 相关文献

参考文献3

二级参考文献26

  • 1谷湘潜,康红文,曹鸿兴.复数域内的最小二乘法[J].自然科学进展,2006,16(1):49-54. 被引量:22
  • 2GU Xiangqian KANG Hongwen CAO Hongxing.The least-square method in complex number domain[J].Progress in Natural Science:Materials International,2006,16(3):307-312. 被引量:6
  • 3吴一戎,洪文,王彦平.极化干涉SAR的研究现状与启示[J].电子与信息学报,2007,29(5):1258-1262. 被引量:52
  • 4杨磊,赵拥军,王志刚.基于功率和相位联合估计TLS-ESPRIT算法的极化干涉SAR数据分析[J].测绘学报,2007,36(2):163-168. 被引量:9
  • 5TREUHAFT R N, MADSEN S N, MOGHADDAM M, et al. Vegetation Characteristics and Underlying Topography from Interferolnetric Radar[J]. Radio Science, 1996, 31 (6) : 1449-1485.
  • 6CLOUDE S R, PAPATHANASSIOU K P. Polarimetric SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5) : 1551-1565.
  • 7TREUHAFT R N, SIQUEIRA P R. Vertical Structure of Vegetated Land Sur{aees from Interferometric and Polarimetric Radar[J]. Radio Science, 2000, 35(1): 141-177.
  • 8PAPATHANASSIOU K P, CLOUDE S R. Single-baseline Polarimetric SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2352-2363.
  • 9CLOUDE S R, PAPATHANASSIOU K P. Three-stage Inversion Process for Polarimetric SAR Interferometry[J]. IEE Proceedings: Radar, Sonar and Navigation, 2003, 150 (3) : 125-134.
  • 10GILBOA G, SOCHEN N. Image Enhancement and Denoising by Complex Diffusion Processes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (8) : 1020-1036.

共引文献47

同被引文献25

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部