期刊文献+

基于长短时记忆神经网络的能谱核素识别方法 被引量:12

Energy spectrum nuclide recognition method based on long short-term memory neural network
在线阅读 下载PDF
导出
摘要 针对新兴的能谱核素识别方法在混合放射性核素的噪声环境中存在识别速度慢、准确率较低等问题,提出了基于长短时记忆神经网络(LSTM)的能谱核素识别方法。实验使用溴化镧(LaBr3)晶体探测器,分别对环境中60Co、137Cs放射性源分组测量得到能谱数据集,首先使用数据平滑方法和归一化方法进行数据预处理,然后将能谱数据按时间序列分组以获得可用的输入序列数组,最后训练LSTM模型得到预测结果。通过基于BP神经网络和卷积神经网络(CNN)的两个能谱识别模型进行对比,得到在测试集中平均识别率分别为83.45%和86.21%,而LSTM能谱识别模型平均识别率为93.04%,实验结果表明,该能谱模型在核素识别效果中表现较好,可用于快速的能谱核素识别设备上。 Energy spectrum data analysis is the main source of nuclide identification.Aiming at the slow recognition speed and low accuracy of the emerging energy spectrum nuclide identification method in the noisy environment of mixed radionuclides,an energy spectrum nuclide recognition method based on long short-term memory neural network(LSTM)is proposed.In the experiment,a LaBr3 crystal detector was used to measure the 60 Co and 137 Cs radioactive sources in the environment to obtain a gamma spectrum data set.First,the experiment used data smoothing and normalization methods for data preprocessing.Then,the energy spectrum data was grouped in time series to obtain a usable input sequence array.Finally,the prediction results were obtained through the LSTM model.By comparing two energy spectrum recognition models based on BP neural network and convolutional neural network(CNN),the average recognition rates in the test set are 83.45%and 86.21%respectively,while the average recognition rate of the LSTM model is 93.04%.The experimental results show that the energy spectrum model has performed well in the nuclide identification and can be used in fast energy spectrum nuclide identification equipment.
作者 王瑶 刘志明 万亚平 欧阳纯萍 Wang Yao;Liu Zhiming;Wan Yaping;Ouyang Chunping(School of Computer,University of South China,Hengyang 421001,China;CNNC Key Laboratory on High Trusted Computing(University of South China),Hengyang 421001,China)
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2020年第10期149-156,共8页 High Power Laser and Particle Beams
基金 中央军委科技委创新特区项目(17-163-15-XJ-002-002-04) 湖南省教育厅重点项目(17A185) 湖南省自然科学基金项目(2019JJ0486) 2020年度创新型省份建设专项抗击新冠肺炎疫情应急专题项目(2020SK3010)。
关键词 能谱数据 长短时记忆 核素识别 数据平滑 归一化 energy spectrum data long short-term memory nuclide identification data smoothing normalization
作者简介 王瑶(1995—),男,硕士研究生,从事核技术及应用研究.hnuscwy@163.com;通信作者:刘志明(1972—),男,教授,从事核电子学与探测技术研究.nhdxlzm@foxmail.com。
  • 相关文献

参考文献9

二级参考文献78

  • 1周海波,刘建业,赖际舟.干涉型光纤陀螺随机噪声的分析研究[J].传感器与微系统,2006,25(11):73-76. 被引量:12
  • 2黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:251
  • 3陈熙源,许常燕.基于前向线性预测算法的光纤陀螺零漂的神经网络建模[J].中国惯性技术学报,2007,15(3):334-337. 被引量:11
  • 4赵海,揭春雨.基于有效子串标注的中文分词[J].中文信息学报,2007,21(5):8-13. 被引量:26
  • 5Knoll G F. Radiation Detection and Measurement [M]. 4 ED. New York, USA: John Wiley & Sons, Inc. , 2010.
  • 6Ross T J. Fuzzy Logic With Engineering Applications [M]. 2 ED. Chichester, UK: John Wiley & Sons, Inc. , 2004.
  • 7Stezowski O, Astier A, Prevost A, et al. Automatic energy calibration of germanium detectors using fuzzy set theory[J]. Nucl Instr and Meth in Phys Research A, 2002, 488(1 - 2) : 314 - 322.
  • 8Sivanandam S N, Sumathi S, Deepa S N. Introduction to Fuzzy Logic using MATLAB [M]. New York, USA: Springer, 2007.
  • 9Morhac M. An algorithm for determination of peak regions and baseline elimination in spectroscopic data [J]. Nucl Instr and Meth in Phys Research A, 2009, 6011(2) : 478 - 487.
  • 10Heath R L. Gamma ray spectrum catalogue Ge and Si spectra [DB/OL]. (1999-03-29). http: //www. inl. gov/gammaray/ catalogs/pdf/gecat, pdf.

共引文献338

同被引文献60

引证文献12

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部