期刊文献+

Neural machine translation:Challenges,progress and future 被引量:12

原文传递
导出
摘要 Machine translation(MT)is a technique that leverages computers to translate human languages automatically.Nowadays,neural machine translation(NMT)which models direct mapping between source and target languages with deep neural networks has achieved a big breakthrough in translation performance and become the de facto paradigm of MT.This article makes a review of NMT framework,discusses the challenges in NMT,introduces some exciting recent progresses and finally looks forward to some potential future research trends.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第10期2028-2050,共23页 中国科学(技术科学英文版)
基金 the National Natural Science Foundation of China(Grant Nos.U1836221 and 61673380) the Beijing Municipal Science and Technology Project(Grant No.Z181100008918017)。
作者简介 Corresponding authors:ZHANG JiaJun,email:jjzhang@nlpr.ia.ac.cn;Corresponding authors:ZONG ChengQing,email:cqzong@nlpr.ia.ac.cn。
  • 相关文献

同被引文献167

引证文献12

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部