期刊文献+

带马氏切换的时滞脉冲神经网络稳定性分析 被引量:3

The Stability of Impulsive Stochastic Delay Neural Networks with Markovian Switching
在线阅读 下载PDF
导出
摘要 为研究带马氏切换的时滞脉冲随机神经网络的均方指数稳定性,构造了合适的Lyapunov函数,并利用伊藤公式、矩阵知识、泛函理论及神经网络自身的特性,对脉冲时刻及非脉冲时刻的系统状态进行分析,得到了该神经网络具有均方指数稳定性的判别准则,该准则应用广泛,简单好用.最后通过数值例子及仿真模拟,说明了该准则的正确性. In order to study the mean square exponential stability of impulse stochastic delay neural networks with Markovian switching,a suitable Lyapunov function was established.Based on Ito^formula,functional theory,the characteristics of neural networks and the knowledge of matrix,the state of system at impulsive time and non-impulsive time was analyzed,getting the rules to distinguish the mean square exponential stability of the stochastic neural network.The numerical example analysis and simulation results show that the rules are efficient,simple and validity.
作者 席福宝 徐畅 XI Fu-bao;XU Chang(School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2020年第10期1133-1137,共5页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(11671034)。
关键词 时滞脉冲神经网络 均方指数稳定性 马氏切换 delayed neural networks with impulses mean square exponential stability Markovian switching
作者简介 席福宝(1963—),男,博士,教授,E-mail:xifb@bit.edu.cn;通信作者:徐畅(1995—),女,硕士,E-mail:692961142@qq.com.
  • 相关文献

参考文献4

二级参考文献24

  • 1牛健人,张子方,徐道义.变时滞Cohen-Grossberg随机神经网络的均方指数稳定性[J].工程数学学报,2005,22(6):1001-1005. 被引量:10
  • 2江明辉,沈轶,廖晓昕.变时滞随机微分方程的指数稳定性[J].工程数学学报,2006,23(6):961-965. 被引量:7
  • 3Hopfiedld J J.Neuron with graded response have collective computational properties like those of two state neurons[J].Proc Natl Acad Sci USA,1984,81:3088-3092.
  • 4Li Y,Lu L.Global exponential stability and existence of periodic solution of Hopfield-type networks with impulses[J].Phys Lett A,2004,1333:62-71.
  • 5Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations:Periodic Solutions and Applica-tions[M].Harlow:Longman,1993.
  • 6Liu X,Ballinger G.Boundedness for impulsive delay differential equations and applications to population growth models[J].Nonlinear Anal,2003,53:1041-1062.
  • 7Xia Y,et al.New results on the existence and uniqueness of almost periodic solutions for BAM neural networks with continuously distributed delays[J].Chaos Solitons & Fractals,2007,31(4):928-936.
  • 8Wang Z,et al.Robust stability for stochastic delay neural networks with time delays[J].Nonlinear Analysis:Real World Applications,2006,7:1119-1128.
  • 9Lu J X,Ma Y C.Mean square exponential stability and periodic solutions of stochastic delay cellular neural networks[J].Chaos Solitons and Fractals,2008,38:1323-1331.
  • 10Mao X.Stochastic Differential Equations and Application[M].Chichester:Horwood,1997.

共引文献5

同被引文献30

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部