期刊文献+

基于核心度和偏移量的社区检测算法

Community Detection Algorithm Based on Core Degree and Distance
在线阅读 下载PDF
导出
摘要 为减少社区检测算法中大量中间结果的计算对社区划分的影响,同时能够准确检测到网络的社区划分以及网络的核心社区,提出了一种基于核心度和偏移量的社区检测算法,其中核心度和偏移量定义了任意节点作为社区核心的程度。首先针对复杂网络的邻接矩阵,应用广度优先搜索算法计算网络中节点之间的边介数,基于边介数确定网络中每条边的权值,计算得到网络的加权邻接矩阵及全局距离矩阵;然后计算网络节点的核心度和偏移量,来确定社区的核心节点和核心社区;最后对其余节点进行划分以完成社区检测。在数据集Karate、Dolphins、Football上的实验结果表明,该算法具有很好的稳定性,并且可以很好地检测出社区结构,相比其他的方法,该算法复杂度更低,计算量更少,更高效。 In order to reduce the impact of the calculation of a large number of intermediate results in the community detection algorithms on community partitioning,and to accurately detect the community division of the network and the core community of the network,we propose a community detection algorithm based on core degree and distance which define the degree to which any node is the core of the community.Firstly,based on the adjacency matrix of the complex network,the breadth-first search algorithm is applied to calculate the betweenness in the network.The weight of each edge is determined based on betweenness,and the weighted adjacency matrix and global distance matrix of the network are calculated.Then,the core degree and distance of the network node are calculated to determine the core nodes and core communities.Finally,the remaining nodes are dispatched to complete the community detection.The experimental results on the datasets Karate,Dolphins,and Football show that the proposed algorithm can well detect the community structure with high stability.Compared with other methods,it has lower complexity,less calculation and more efficiency.
作者 辛慧英 刘向阳 XIN Hui-ying;LIU Xiang-yang(School of Science,Hohai University,Nanjing 211100,China)
机构地区 河海大学理学院
出处 《计算机技术与发展》 2020年第10期37-41,共5页 Computer Technology and Development
基金 国家自然科学基金(61001139)。
关键词 边介数 距离矩阵 核心度 偏移量 核心社区 betweenness distance matrix core degree distance core community
作者简介 辛慧英(1995-),女,硕士研究生,研究方向为复杂网络、社区划分;通讯作者:刘向阳(1977-),男,副教授,博士,研究方向为复杂网络分析、数据分析和机器学习。
  • 相关文献

参考文献6

二级参考文献42

  • 1吕刚,范瑜,李国国.动态驱动神经网络辨识永磁直线同步电动机模型[J].控制理论与应用,2007,24(1):99-102. 被引量:7
  • 2戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424. 被引量:84
  • 3Esmat Rashedi,Hossien Nezamabadi-pour,Saeid Saryazdi.Filter modeling using gravitational search algorithm[J].Engineering Applications of Artificial Intelligence.2010(1)
  • 4Esmat Rashedi,Hossein Nezamabadi-pour,Saeid Saryazdi.GSA: A Gravitational Search Algorithm[J].Information Sciences.2009(13)
  • 5Mohammad Khajehzadeh,Mohd Raihan Taha,Ahmed El-Shafie,Mahdiyeh Eslami.A modified gravitational search algorithm for slope stability analysis[J].Engineering Applications of Artificial Intelligence.2012(8)
  • 6U. Güven?,Y. S?nmez,S. Duman,N. Y?rükeren.Combined economic and emission dispatch solution using gravitational search algorithm[J].Scientia Iranica.2012(6)
  • 7R.K. Swain,N.C. Sahu,P.K. Hota.Gravitational Search Algorithm for Optimal Economic Dispatch[J].Procedia Technology.2012
  • 8M.A. Behrang,E. Assareh,M. Ghalambaz,M.R. Assari,A.R. Noghrehabadi.Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm)[J].Energy.2011(9)
  • 9Beatriz de SouzaLeite Pires de Lima,BrenoPinheiro Jacob,NelsonFrancisco Favilla Ebecken.A hybrid fuzzy/genetic algorithm for the design of offshore oil production risers[J].Int J Numer Meth Engng.2005(11)
  • 10AntonioRovira,ManuelValdés,JesúsCasanova.A new methodology to solve non‐linear equation systems using genetic algorithms. Application to combined cyclegas turbine simulation[J].Int J Numer Meth Engng.2005(10)

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部