摘要
                
                    为减少社区检测算法中大量中间结果的计算对社区划分的影响,同时能够准确检测到网络的社区划分以及网络的核心社区,提出了一种基于核心度和偏移量的社区检测算法,其中核心度和偏移量定义了任意节点作为社区核心的程度。首先针对复杂网络的邻接矩阵,应用广度优先搜索算法计算网络中节点之间的边介数,基于边介数确定网络中每条边的权值,计算得到网络的加权邻接矩阵及全局距离矩阵;然后计算网络节点的核心度和偏移量,来确定社区的核心节点和核心社区;最后对其余节点进行划分以完成社区检测。在数据集Karate、Dolphins、Football上的实验结果表明,该算法具有很好的稳定性,并且可以很好地检测出社区结构,相比其他的方法,该算法复杂度更低,计算量更少,更高效。
                
                In order to reduce the impact of the calculation of a large number of intermediate results in the community detection algorithms on community partitioning,and to accurately detect the community division of the network and the core community of the network,we propose a community detection algorithm based on core degree and distance which define the degree to which any node is the core of the community.Firstly,based on the adjacency matrix of the complex network,the breadth-first search algorithm is applied to calculate the betweenness in the network.The weight of each edge is determined based on betweenness,and the weighted adjacency matrix and global distance matrix of the network are calculated.Then,the core degree and distance of the network node are calculated to determine the core nodes and core communities.Finally,the remaining nodes are dispatched to complete the community detection.The experimental results on the datasets Karate,Dolphins,and Football show that the proposed algorithm can well detect the community structure with high stability.Compared with other methods,it has lower complexity,less calculation and more efficiency.
    
    
                作者
                    辛慧英
                    刘向阳
                XIN Hui-ying;LIU Xiang-yang(School of Science,Hohai University,Nanjing 211100,China)
     
    
    
                出处
                
                    《计算机技术与发展》
                        
                        
                    
                        2020年第10期37-41,共5页
                    
                
                    Computer Technology and Development
     
            
                基金
                    国家自然科学基金(61001139)。
            
    
                关键词
                    边介数
                    距离矩阵
                    核心度
                    偏移量
                    核心社区
                
                        betweenness
                        distance matrix
                        core degree
                        distance
                        core community
                
     
    
    
                作者简介
辛慧英(1995-),女,硕士研究生,研究方向为复杂网络、社区划分;通讯作者:刘向阳(1977-),男,副教授,博士,研究方向为复杂网络分析、数据分析和机器学习。