期刊文献+

考虑强度差效应的非对称Drucker屈服模型及实验验证

Asymmetric Drucker yield model considering strength difference effect and its experimental verification
在线阅读 下载PDF
导出
摘要 基于对称Drucker屈服函数,提出一种非对称屈服模型。依据经典的对称屈服函数非对称化理论,将方向系数引入Cauchy应力张量的第一不变量,通过加权应力项分析拉伸应力与压缩应力之比对屈服轨迹及各向异性的影响。基于薄板成形的平面应力状态假定,得到由两个方向系数以及8个各向异性参数组成的Drucker屈服模型。给出了几种与轧制方向成不同角度的平面拉伸/压缩试样的屈服极限,利用MATLAB优化算法实现了屈服模型方向系数及各向异性参数的标定,并与实验结果进行比对。引入的Drucker屈服模型用来描述金属锆板面内压缩和厚向压缩时的屈服曲面,通过与粘塑性自洽(Visco-Plastic Self-Consistent,VPSC)多晶体模型计算结果进行对比,验证了所提出的模型的有效性。Hill’48,Yld2004-18p及所提出的Drucker屈服模型通过ABAQUS VUMAT子程序实现,并分别用于模拟某圆筒件拉深成形过程,通过对比3种屈服模型的模拟结果与实验结果发现,所提出的Drucker屈服函数能够较好地描述金属的强度差效应。 An asymmetric yield model was proposed based on symmetric Drucker yield function.Based on the classical asymmetric theory of the symmetric yield function,the direction coefficients were introduced to the first invariant of Cauchy stress tensor.With the weighted stress terms,the effect of ratio of tensile stress and compression stress on yield locus and anisotropy was analyzed.Based on the hypothesis of plane stress state of thin sheet metal forming,the Drucker yield model with two direction coefficients and eight anisotropic parameters was obtained.The yield limits of plane tensile and compressive samples with different angles along rolling directions were obtained,the identification of direction coefficients and anisotropic parameters was realized using optimization algorithm in MATLAB and the comparison with experimental results was carried out.The proposed Drucker yield model was used to describe the yield surfaces of zirconium plate under in-plane compression and through-thickness compression.Comparisons with the results calculated by visco-plastic self-consistent(VPSC)polycrystalline model were carried out,and the validity of the proposed model was verified.Hill’48,Yld2004-18 p and the proposed Drucker yield model were implemented by ABAQUS VUMAT subroutines and were used to simulate the deep drawing process of the cylindrical part respectively.By comparing the simulation and experimental results of the three yield models,the proposed Drucker yield model can better describe the strength difference effect of metals.
作者 王中美 刘纪源 唐炳涛 冯莹莹 郭宁 戈海龙 WANG Zhong-mei;LIU Ji-yuan;TANG Bing-tao;FENG Ying-ying;GUO Ning;GE Hai-long(School of Mechanical&Automotive Engineering,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,China;Laser Institute,Shandong Academy of Sciences,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250103,China;State Key Laboratory of Rolling and Automation,Northeastern Uriversity,Shenyang 110819,China)
出处 《塑性工程学报》 CAS CSCD 北大核心 2020年第9期194-203,共10页 Journal of Plasticity Engineering
基金 国家自然科学基金资助项目(51875295) 济南市“高校20条”资助项目(2018GXRC026) 齐鲁工业大学(山东省科学院)青年博士合作基金资助项目(2017BSHZ002) 山东省科学院重大创新专项 辽宁省自然基金资助项目(2019-KF-25-03)。
关键词 屈服模型 强度差效应 各向异性 yield model strength difference effect anisotropy
作者简介 通信作者:刘纪源,男,1984年生,博士,讲师,主要从事高强钢品种开发及塑性成形工艺研究,E-mail:neu_liujy@163.com;第一作者:王中美,女,1992年生,硕士研究生,主要从事金属塑性成形研究,E-mail:wzm_310@163.com。
  • 相关文献

参考文献5

二级参考文献86

  • 1王滨.ASTM金属材料拉伸试验方法介绍[J].理化检验(物理分册),2004,40(10):528-532. 被引量:7
  • 2王海波,万敏,吴向东,韩非.不同强化模型下的板料成形极限[J].机械工程学报,2007,43(8):60-65. 被引量:13
  • 3HILL R. A theory of the yielding and plastic flow of anisotropic metals[J].proc R Soc of London Series A,1948.281.
  • 4HIILL R. Theoretical plasticity of textured aggregates[J].{H}Mathematical Proceedings of the Cambridge Philosophical Society,1979.179.
  • 5HILL R. Constitutive modeling of orthotropic plasticity in sheet metals[J].{H}Journal of the Mechanics and Physics of Solids,1990,(03):405-417.
  • 6HILL R. A user-friendly theory of orthotropic plasticity in sheet metals[J].{H}International Journal of Mechanical Sciences,1993,(01):19-25.
  • 7BARLAT F,LIAN J. Plastic behavior and stretch ability of sheet metals,Part I:A yield function for orthotropic sheet under plane stress conditions[J].{H}International Journal of Plasticity,1989,(01):51-66.
  • 8BARLAT F,LEGE D J,BREM J C. A six-component yield function for anisotropic materials[J].{H}International Journal of Plasticity,1991,(07):693-712.
  • 9BARLAT F,BECKER R C,HAYASHIDA Y. Yielding description for solution strengthened aluminum alloys[J].Int J Hast,1997.385-401.
  • 10BARLAT F,MAEDA Y,CHUNG K. Yield function development for aluminum alloy sheets[J].{H}Journal of the Mechanics and Physics of Solids,1997,(11-12):1727-1763.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部