期刊文献+

基于医院RIS-PACS场景的人工智能骨龄检测系统集成技术与实现 被引量:6

Technical Realization of Integrating Bone Age Artificial Intelligence Assessment System with Hospital RIS-PACS Network
在线阅读 下载PDF
导出
摘要 目的探讨基于医院RIS-PACS网络和工作流的人工智能骨龄检测系统的集成方法与技术实现。方法基于Python flask web框架的http协议,通过调用、对接医院PACS、RIS接口,设计一种架构以实现自主研发的2套人工智能骨龄检测系统(CHBone AI 1.0/2.0)与PACS、RIS系统的集成。结果2套CHBone AI均成功嵌入式集成于医院网络及RIS-PACS平台,且稳步临床"并行运行"已近3年;在目前医院千兆网络条件下,临床每个病例骨龄AI检测整个流程不超过3 s。结论人工智能骨龄检测系统在医院RIS-PACS平台上集成与"并行运行"完成了I期构建,为系统自我进化及"替代运行"的Ⅱ期建设夯实了基础。 Objective To explore the integration method and technical realization of artificial intelligence bone age assessment system with the hospital RIS-PACS network and workflow.Methods Two sets of artificial intelligence based on bone age assessment systems(CHBoneAI 1.0/2.0)were developed.The intelligent system was further integrated with RIS-PACS based on the http protocol in Python flask web framework.Results The two sets of systems were successfully integrated into the local network and RIS-PACS in hospital.The deployment has been smoothly running for nearly 3 years.Within the current network setting,it takes less than 3 s to complete bone age assessment for a single patient.Conclusion The artificial intelligence based bone age assessment system has been deployed in clinical RIS-PACS platform and the"running in parallel",which is marking a success of Stage-I and paving the way to Stage-II where the intelligent systems can evolve to become more powerful in particular of the system self-evolution and the"running alternatively".
作者 施莉丽 杨秀军 于广军 赖双 潘志君 王乾 SHI Lili;YANG Xiujun;YU Guangjun;LAI Shuang;PAN Zhijun;WANG Qian(Shanghai Children's Hospital,Shanghai Jiao Tong University,Shanghai,200062;Winning Health Technology Group Co.Ltd.,Shanghai,200072;School of Biomedical Engineering,Shanghai Jiao Tong University,Shanghai,200030)
出处 《中国医疗器械杂志》 2020年第5期415-419,共5页 Chinese Journal of Medical Instrumentation
基金 上海交通大学医工交叉重点项目(YG2017ZD08) 上海市经信委人工智能创新发展专项(2018-RGZN-01010)。
关键词 骨龄 腕部数字化放射摄影 人工智能 医学影像存档与通讯系统 异构系统间集成 bone age wristdigital radiography artificial intelligence PACS heterogeneous integration
作者简介 通信作者:杨秀军,E-mail:woothingyang2008@126.com。
  • 相关文献

参考文献3

二级参考文献29

  • 1李新军,邵明省.基于Gabor函数能量的指纹识别[J].实验室研究与探索,2010,29(1):185-187. 被引量:4
  • 2中国人手腕骨发育标准CHN法[S].中华人民共和国体育运动委员会.1992.
  • 3PIETKA E, MCNITT-GRAY M F, et al. Computer--assisted phalangeal analysis in skeletal age assessment[J]. IEEE Transactions on Medical Imaging, 1991, 10(4): 616 - 620.
  • 4GARN S M, HERTZOG K P, POZNANSKI A K, et al. Metacarpophalangeal length in the evaluation of skeletal malformation [J]. Radiology, 1972, 105(11): 375 - 381.
  • 5PIETKA E, MCNITT--GRAY M F, HALL T, et al. Computerized bone analysis of hand radiographs[C].//Proc. SPIE, 1992 (1652):522 - 528.
  • 6PIETKA E, KAABI L, KUO M L, et al. Feature extraction in carpal-bone analysis[J]. IEEE Transactions on Medical Imaging, 1993, 12(1):44 - 49.
  • 7EWA P, ARKADIUSZ G. Computer-Assisted Bone Age Assessment: Image Preprocessing and Epiphyseal/Metaphyseal ROI Extraction[J], IEEE Transactions on Medical Imaging, 20(8), 2001.
  • 8LIM J S. Two -Dimensional Signal & Image processing[M]. Englewood Cliffs, NJ: Prentice-Hall, 1990.
  • 9鞠里.基于彩色图像的手部测量系统的研究与实现[D].北京:北京航空航天大学,硕士学位论文,2004:30-39.
  • 10KI-HONG P, JONG-MIN L, WHOI-YUL K. Robust Epiphyseal Extraction Method Based on Horizontal Profile Analysis of Finger Images[C]//International Symposium on Information Technology Convergence, 2007:278 - 282.

共引文献74

同被引文献60

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部