期刊文献+

基于Mask R-CNN的胶囊缺陷检测方法 被引量:6

Capsule Defect Detection Method Based on Mask R-CNN
在线阅读 下载PDF
导出
摘要 针对传统的空心胶囊缺陷检测多用于人工抽样检测,无论是时间成本还是人力成本都较高,并且带有一定的主观性的问题,研究分析了胶囊缺陷的特点,设计并搭建了胶囊制造缺陷在线检测实验平台,设计并开源了药用空心胶囊凹陷缺陷数据集,提出了一种基于Mask R-CNN算法的胶囊缺陷检测识别方法,使用ResNet作为特征提取网络,ROIAlign对特征图ROI提取是完成像素级的对齐,能很好地解决胶囊缺陷的检测难题。经过实验验证,基于Mask R-CNN的胶囊缺陷检测识别的正确率较高。 Traditional hollow capsule defect detection often adopts the manual sampling detection method,both the time cost and the labor cost are high,and there are certain subjective problems.The characteristics of capsule defects are studied and analyzed.The experimental platform for online detection of capsule manufacturing defects is designed and built.The data set of medicinal hollow capsule depression defect is designed and opened source.A capsule defect detection and recognition method based on Mask R-CNN algorithm is proposed.The method uses ResNet as the feature extraction network.ROIAlign extracts the feature map ROI to complete pixel-level alignment,which can solve the problem of capsule defect detection.After the experimental verification,the correct rate of capsule defect detection based on Mask R-CNN is high.
作者 段仲静 李少波 胡建军 杨静 王铮 DUAN Zhongjing;LI Shaobo;HU Jianjun;YANG Jing;WANG Zheng(Key Laboratory of Advanced Manufacturing Technology of Ministry of Education,Guizhou University,Guiyang 550025,China;School of Mechanical Engineering,Guizhou University,Guiyang 550025,China)
出处 《无线电工程》 2020年第10期857-862,共6页 Radio Engineering
基金 国家自然科学基金资助项目(51475097,91746116)。
关键词 深度学习 Mask R-CNN ResNet 胶囊 缺陷检测 deep learning Mask R-CNN ResNet capsule defect detection
作者简介 段仲静,男,(1992—),就读于贵州大学机械工程专业,硕士研究生,主要研究方向:产品在线无损质量检测;通讯作者:李少波,男,(1973—),博士,教授,主要研究方向:智能制造、大数据等;胡建军,男,(1973—),博士,教授,主要研究方向:大数据、深度学习;杨静,男,(1992—),博士研究生,主要研究方向:机器视觉、智能制造、机器人;王铮,男,(1994—),硕士研究生,主要研究方向:机械产品在线无损质量检测。
  • 相关文献

参考文献10

二级参考文献80

  • 1王娟,周永霞,徐冰俏,王康健.图像处理在胶囊外形缺陷检测中的应用[J].中国计量学院学报,2012,23(3):239-245. 被引量:12
  • 2吴恒山,段雄文,李晨阳.叶结点编码四叉树的邻域寻找算法[J].计算机应用,2005,25(11):2624-2626. 被引量:2
  • 3王福生,齐国清.二值图像中目标物体轮廓的边界跟踪算法[J].大连海事大学学报,2006,32(1):62-64. 被引量:41
  • 4陈仕高.佳多虫情测报灯对水稻迁飞性害虫的诱集效应及其改进技术的探讨[J].中国植保导刊,2006,26(5):41-43. 被引量:11
  • 5冈萨雷斯.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2007:427.
  • 6Zhu Zheng - tao, Huang Liu - qian, Yu Xiong - yi. Pre - processing techniques for on - line capsule inspection based on machine vision[ C ]//2011 Fourth International Conference on Intelligent Computation Technology and Automation. 2011, 2: 653 - 656.
  • 7Karloff A C, Scott N E, Muscedere R. A flexible design for a cost effective, high throughput inspection system for pharmaceuti- cal capsules[ C]// IEEE International Conference on Industrial Technology. 2005:1 -4.
  • 8Islam M J, Ahmadi M, Sid - Ahmed M A. Image processing techniques for quality inspection of gelatin capsules in pharmaceuti- cal applications[ C]//2005 10th International Conference on Control, Automation, Robotics and Vision. 2005:862 -867.
  • 9Huang Guang -bin, Zhu Qin -yu, Siew Chee -kheong. Extreme learning machine: theory and applications [ J ]. Neurocomput- ing, 2006, 70:489-501.
  • 10Huang Guang - bin, Zhu Qin - yu, Siew Chee - kheong. Extreme learning machine : a new learning scheme of feedforward neu- ral networks [ C ]//International Joint Conference on Neural Networks. 2004, 2:985 -990.

共引文献186

同被引文献59

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部