期刊文献+

EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms 被引量:4

在线阅读 下载PDF
导出
摘要 The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective automated seizure detection methods.This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases.The proposed method consists of three steps:(i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis(MSPCA),(ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition(EMD),discrete wavelet transform(DWT),and dual-tree complex wavelet transform(DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals,and(iii) allocate the feature vector to the relevant class(i.e.,seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine(SVM),k-nearest neighbor(k-NN),and linear discriminant analysis(LDA).The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process.The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods.
出处 《The Journal of Biomedical Research》 CAS CSCD 2020年第3期151-161,共11页 生物医学研究杂志(英文版)
作者简介 Corresponding author:Itaf Ben Slimen,Electric Engineering department,Centre de Recherche et de Production Research Lab.,Ecole Nationale Superieure des Ingenieurs de Tunis,University of Tunis,street Taha Hussein Montfleury,Tunis 1008,Tunisia.Tel:+216-27-542-572,E-mail:itafslimen@gmail.com.
  • 相关文献

同被引文献26

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部