期刊文献+

一类(p1(x),p2(x))-双调和方程解的存在性及多重性

Existence and Multiplicity of Solutions for a Class of (p1(x),p2(x))-biharmonic Equations
原文传递
导出
摘要 研究一类(p1(x),p2(x))-双调和方程在Navier边界条件下的边值问题,利用山路引理和Fountain定理证明了这类方程解的存在性和多重性. In this paper,we study a boundary value problem of a class of(p1(x),p2(x))-biharmonic equations with Navier boundary condition.By applying the Mountain-Pass theorem and the Fountain theorem we establish the existence of solution and also show there are infinitely many solutions of the problem.
作者 钟秋平 吴甜甜 ZHONG Qiu-ping;WU Tian-tian(College of Liberal Arts Education,Guangdong Lingnan Institute of Technology,Guangzhou 510663,China;Department of Mathematics and Information Science,Zhengzhou University of Light Industry,Zhengzhou 450002,China)
出处 《数学的实践与认识》 北大核心 2020年第16期239-249,共11页 Mathematics in Practice and Theory
基金 国家自然科学基金“关于两个分量的非线性色散波方程组的研究”(11701525) 国家自然科学基金“修正的两个分量的Camassa-Holm系统的若干问题研究”(11326161)。
关键词 (p1(x) p2(x))-双调和方程 临界点 变指数Lebesgue-Sobolev空间 山路引理 Fountain定理 (p1(x),p2(x))-biharmonic equation Critical point variable exponent lebesguesobolev space mountain-pass lemma fountain theorem
  • 相关文献

参考文献5

二级参考文献40

  • 1黎芳,刘瑞华.p(x)调和映射在图像恢复中的应用[J].中国图象图形学报,2008,13(1):19-23. 被引量:5
  • 2姚仰新,王荣鑫,沈尧天.NONTRIVIAL SOLUTION FOR A CLASS OF SEMILINEAR BIHARMONIC EQUATION INVOLVING CRITICAL EXPONENTS[J].Acta Mathematica Scientia,2007,27(3):509-514. 被引量:9
  • 3刘玥,王征平.BIHARMONIC EQUATIONS WITH ASYMPTOTICALLY LINEAR NONLINEARITIES[J].Acta Mathematica Scientia,2007,27(3):549-560. 被引量:13
  • 4Aubin T, Bahri A. Une hypothese topologique pour le probl~me de la courbure scalaire prescrite. J Math Pures Appl, 1997, 76(10): 843 850.
  • 5Bahri A. Critical Point at Infinity in Some Variational Problems. Pitman Res Notes Math, Ser 182. Harlow: Longman Sci Tech, 1989.
  • 6Bahri A. An invariant for Yamabe-type flows with applications to scalar-curvature problems in high di- mension. Duke Math J, 1996, 81:323-466.
  • 7Bahri A, Coron J M. The scalar curvature problem on the standard three dimensional spheres. J Funct Anal, 1991, 95:106 172.
  • 8Bahri A, Rabinowtiz P H. Periodic solutions of hamiltonian systems of three-body type. Ann Inst H Poinear Anal Non Linear, 1991, 8:561-649.
  • 9Ben Ayed M, Chen Y, Chtioui H, Hammami M. on the prescribed scalar curvature problem on 4-manifolds. Duke Math J, 1996, 84:633-677.
  • 10Ben Ayed M, Hammami M. On a Fourth order Elliptic Equation with critical nonlinearity in dimension Six. Nonlinear Anal TMA, 2006, 64:924-957.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部