期刊文献+

基于小波包和主成分分析的滚动轴承状态振动监视方法 被引量:1

Rolling Bearing Condition Vibration MonitoringBased on Wavelet Packet and Principal Component Analysis
在线阅读 下载PDF
导出
摘要 针对滚动轴承早期故障状态难以监测的现状,文章采用小波包及主成分分析法对滚动轴承振动信号进行分析,提出了一种综合振动能量指标,用于监视滚动轴承状态。采用滚动轴承实验数据对该方法有效性进行了验证,结果表明:该方法构建的综合振动能量指标能够有效发现滚动轴承早期故障,对早期故障程度反应能力强,优于一些其他传统的监视指标。 According to the fact that the early fault state of rolling bearing is difficult to monitor,the wavelet packet decom⁃position and principal component analysis were used to analyze the vibration signals of rolling bearing,and a comprehen⁃sive vibration energy index for monitoring the status of rolling bearing was proposed.The experimental data of rolling bear⁃ing were used to verify the effectiveness of the method,and the results showed that the integrate vibration energy index con⁃structed by the method could effectively find the early fault of rolling bearings,and had a strong reaction capability to the early fault,which outperformed the other traditional monitor indices.
作者 胡强 张赟 庹酉东 周强 HU Qiang;ZHANG Yun;TUO Youdong;ZHOU Qiang(Equipment Project Manage center of Naval Equipment Department,Beijing 100071,China;Naval Aviation University,Yantai Shandong 264001,China;The 91486th Unit of PLA,Lingshui Hainan 572400,China)
出处 《海军航空工程学院学报》 2020年第3期265-270,284,共7页 Journal of Naval Aeronautical and Astronautical University
基金 国家自然科学基金资助项目(51505492)。
关键词 滚动轴承 小波包 主成分分析 状态监视 rolling bearing wavelet packet principal component analysis condition monitoring
作者简介 胡强(1983-),男,工程师,硕士。
  • 相关文献

参考文献10

二级参考文献68

  • 1康海英,栾军英,田燕,郑海起,曹进华.阶次跟踪在齿轮磨损中的应用[J].振动与冲击,2006,25(4):112-113. 被引量:33
  • 2刘金朝,丁夏完,王成国.自适应共振解调法及其在滚动轴承故障诊断中的应用[J].振动与冲击,2007,26(1):38-41. 被引量:25
  • 3康海英,栾军英,郑海起,侯仁军.基于阶次跟踪和HHT能量谱的轴承故障诊断[J].农业机械学报,2007,38(6):205-207. 被引量:4
  • 4沈水富,等.设备故障诊断技术[M].北京:科学出版社出版,1990.1.
  • 5濮良贵.机械设计[M].七版.北京:高等教育出版社,2004.7.
  • 6Pan Y, Chen J, Li X. Bearing Performance Degra- dation Assessment Based on Lifting Wavelet Packet Decomposition and Fuzzy c- means[J]. Mechanical Systems and Signal Processing, 2010, 24(2) : 559- 566.
  • 7Pan Y, Chen J, Guo L. Robust Bearing Perform- ance Degradation Assessment Method Based on Im- proved Wavelet Packet-support Vector Data De- scription[J]. Mechanical Systems and Signal Pro- cessing, 2009, 23(3). 669-681.
  • 8Tang B, Liu W, Song T. Wind Turbine Fault Diag- nosis Based on Morlet Wavelet Transformation and Wigner- ville Distribution [-J]. Renewable Energy, 2010, 35(12): 2862-2866.
  • 9Dong S, Luo T. Bearing Degradation Process Pre- diction Based on the PCA and Optimized LS-SVM Model[J]. Measurement, 2013, 46(9): 3143- 3152.
  • 10Lee J, Qiu H, Yu G, et al. Rexnord Techmcal Services, "Bearing Data Set", IMS, University of Cincinnati, NASA Ames Prognostics Data Reposi- tory, http://ti.arc.nasa.gov/proect/prognostics -data-repository>, NASA Ames, Moffett Field, CA, 2007.

共引文献92

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部