期刊文献+

动态加权非参数判别分析 被引量:5

Dynamic weighted nonparametric discriminant analysis
原文传递
导出
摘要 线性判别分析(LDA)是最经典的子空间学习和有监督判别特征提取方法之一.受到流形学习的启发,近年来众多基于LDA的改进方法被提出.尽管出发点不同,但这些算法本质上都是基于欧氏距离来度量样本的空间散布度.欧氏距离的非线性特性带来了如下两个问题:1)算法对噪声和异常样本点敏感;2)算法对流形或者是多模态数据集中局部散布度较大的样本点过度强调,导致特征提取过程中数据的本质结构特征被破坏.为了解决这些问题,提出一种新的基于非参数判别分析(NDA)的维数约减方法,称作动态加权非参数判别分析(DWNDA).DWNDA采用动态加权距离来计算类间散布度和类内散布度,不仅能够保留多模态数据集的本质结构特征,还能有效地利用边界样本点对之间的判别信息.因此,DWNDA在噪声实验中展现出对噪声和异常样本的强鲁棒性.此外,在人脸和手写体数据库上进行实验,DWNDA方法均取得了优异的实验结果. Linea discriminant analysis(LDA)is one of the most classical subspace learning and supervised learning methods.Inspired by manifold learning,many improved methods based on LDA have been proposed in recent years.Although the motivations of these methods are di?erent,they are all based on the Euclidean distance to measure the spatial dispersion of the samples.The non-linear characteristic of Eucilidean distance brings about two problems:1)these methods are too sensitive to noise and outlier;2)the essential structure would be destructed,due to the overemphasis of the points which has a large local dispersion in manifold or multimodal datasets.To solve these problems,a new dimension reduction method based on nonparametric discriminant analysis(NDA)is proposed,called a dynamic weighted nonparametric discriminant analysis(DWNDA).Then DWNDA uses the dynamic weighted distance to caluculate the within-class and between-class scatters.It can not only retain the essential geometrical structure of multimodal datasets,but also make better use of the discriminant information between marginal point pairs.Hence,the DWNDA shows better robustness to noise and outlier than other methods,which is also demonstrated in experiments.Besides,the DWNDA also shows excellent performance for face and handwrting classification.
作者 高云龙 王志豪 丁柳 潘金艳 王德鑫 GAO Yun-long;WANG Zhi-hao;DING Liu;PAN Jin-yan;WANG De-xin(College of Aeronautics and Astronautics,Xiamen University,Xiamen 361102,China;College of Information Engineering,Jimei University,Xiamen 361021,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第8期1866-1872,共7页 Control and Decision
基金 国家自然科学基金项目(61203176) 福建省自然科学基金项目(2013J05098,2016J01756)。
关键词 非参数判别分析 特征提取 动态加权距离 局部散布度 判别信息 鲁棒性 nonparametric discriminant analysis feature extraction dynamic weighted distance local dispersion discriminative information robustness
作者简介 通讯作者:高云龙(1979-),男,副教授,博士,从事机器学习、时间序列分析等研究,E-mail:gaoyl@xmu.edu.cn;王志豪(1993-),男,硕士生,从事机器学习和模式识别的研究,E-mail:zhwang@stu.xmu.edu.cn;丁柳(1993-),女,硕士生,从事模式识别和维数约简的研究,E-mail:838824384@qq.com;潘金艳(1978-),女,副教授,博士,从事人工智能和机器学习等研究,E-mail:jypan@jmu.edu.cn;王德鑫(1996-),男,本科生,从事机器学习和计算机视觉的研究,E-mail:34520152201338@stu.xmu.edu.cn.
  • 相关文献

参考文献2

二级参考文献17

  • 1Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces versus fisherfaces:Recognition using class specific linear projection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(5):711-720.
  • 2Martinez A M,Kak A C.PCA versus LDA[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(2):228 -233.
  • 3Mika S,Ratsch G,Weston J,et al.Fisher discriminant analysis with kernels[C].Proc of the 1999 IEEE Signal Processing Society Workshop.Madison,1999:41-48.
  • 4Scholkopf B,Mika S,Burges C J C,et al.Input space versus feature space in kernel-based methods[J].IEEE Trans on Neural Networks,1999,10(3):1000-1017.
  • 5Hoegaerts L,Suykens J A K,Vandewalle J,et al.Subset based least squares subspace regression in RKHS[J].Neurocomputing,2005,63(1):293-323.
  • 6Baudat G,Anouar F.Feature vector selection and projection using kernels[J].Neurocomputing,2003,55(1-2):21-38.
  • 7Alex Smola,Bernhard Schlkopf.Generalized discriminant analysis[DB/OL].(2005-03-15).http://www.kernel-machines.org/.
  • 8Baudat G,anouar F.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12(10):2385-2404.
  • 9UCI machine learning repository[DB/OL].(2005-03-15).http://www.ics.uci.edu/~mlearn/MLRepository.html.
  • 10Chen S C,Li D H.Modified linear discriminant analysis[J].Pattern Recognition,2005,38(3):441-443.

共引文献6

同被引文献51

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部